Potential role of vitamin D in the prevention and treatment of type 1 diabetes mellitus

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The incidence of type 1 diabetes mellitus is increasing worldwide, and the number of people with vitamin D deficiency in all age groups, including children and adolescents, is simultaneously growing in the world. Over the past decades, it has been found that vitamin D, in addition to participating in the regulation of calcium homeostasis and bone metabolism, has an anti-inflammatory and immunomodulatory effect. Epidemiological evidence suggests the involvement of vitamin D deficiency in the pathogenesis of type 1 diabetes mellitus. Polymorphisms in genes important for vitamin D metabolism also modulate the risk of type 1 diabetes mellitus. Several studies have evaluated the role of vitamin D as adjuvant immunomodulating therapy in patients with newly diagnosed type 1 diabetes mellitus. The purpose of this review is to present current data on the involvement of vitamin D in the pathogenesis of type 1 diabetes mellitus and to evaluate its role as a drug for the prevention of the disease and its use in treatment in addition to insulin therapy.

About the authors

Elena V. Misharina

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: mishellena@gmail.com
ORCID iD: 0000-0002-0276-7112
SPIN-code: 7350-5674
Scopus Author ID: 386281
ResearcherId: К-2720-2018

MD, PhD

Russian Federation, 3 Mendeleevskaya line, Saint Petersburg, 199034

Mariya I. Yarmolinskaya

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott; North-Western State Medical University named after I.I. Mechnikov

Author for correspondence.
Email: m.yarmolinskaya@gmail.com
ORCID iD: 0000-0002-6551-4147
SPIN-code: 3686-3605
Scopus Author ID: 7801562649
ResearcherId: P-2183-2014

MD, PhD, DSci (Medicine), Professor, Professor of the Russian Academy of Sciences

Russian Federation, 3 Mendeleevskaya line, Saint Petersburg, 199034; Saint Petersburg

Elena I. Abashova

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: abashova@yandex.ru
ORCID iD: 0000-0003-2399-3108
SPIN-code: 2133-0310
Scopus Author ID: 36503679200
ResearcherId: J-5436-2018

MD, PhD

Russian Federation, 3 Mendeleevskaya line, Saint Petersburg, 199034

References

  1. Ajlamazjan JeK, Abashova EI, Arzhanova ON, et al. Saharnyj diabet i reproduktivnaja sistema zhenshhiny: rukovodstvo dlja vrachej. Moscow: GJeOTAR-Media; 2017. (In Russ.)
  2. Rewers M, Ludvigsson J. Environmental risk factors for type 1 diabetes. Lancet. 2016;387(10035):2340–2348. doi: 10.1016/S0140-6736(16)30507-4
  3. Patterson CC, Dahlquist GG, Gyürüs E, Green A, Soltész G; EURODIAB Study Group. Incidence trends for childhood type 1 diabetes in Europe during 1989-2003 and predicted new cases 2005-20: a multicentre prospective registration study. Lancet. 2009;373(9680):2027–2033. doi: 10.1016/S0140-6736(09)60568-7
  4. Vehik K, Dabelea D. The changing epidemiology of type 1 diabetes: why is it going through the roof? Diabetes Metab Res Rev. 2011;27(1):3–13. doi: 10.1002/dmrr.1141
  5. International Diabetes Federation [Internet]. IDF Diabetes Atlas. 8th edition. 2017. [cited 10 Sept 2018]. Available from: https://diabetesatlas.org/upload/resources/previous/files/8/IDF_DA_8e-EN-final.pdf
  6. Infante M, Ricordi C, Sanchez J, et al. Influence of vitamin D on islet autoimmunity and beta-cell function in type 1 diabetes. Nutrients. 2019;11(9):2185. doi: 10.3390/nu11092185
  7. Holick MF. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord. 2017;18(2):153–165. doi: 10.1007/s11154-017-9424-1
  8. Huh SY, Gordon CM. Vitamin D deficiency in children and adolescents: epidemiology, impact and treatment. Rev Endocr Metab Disord. 2008;9(2):161–170. doi: 10.1007/s11154-007-9072-y
  9. Hilger J, Friedel A, Herr R, et al. A systematic review of vitamin D status in populations worldwide. Br J Nutr. 2014;111(1):23–45. doi: 10.1017/S0007114513001840
  10. Lopes VM, Lopes JR, Brasileiro JP, et al. Highly prevalence of vitamin D deficiency among Brazilian women of reproductive age. Arch Endocrinol Metab. 2017;61(1):21–27. doi: 10.1590/2359-3997000000216
  11. Karonova TL, Grinyova EN, NikitiM IL, et al The prevalence of vitamin D deficiency in the Northwestern region of the Russian Federation among the residents of St. Petersburg and Petrozavodsk. Osteoporosis and Bone Diseases. 2013;16(3):3–7. (In Russ.). doi: 10.14341/osteo201333-7
  12. Pigarova EA, Rozhinskaja LJa, Belaja ZhE, et al. Deficit vitamina D u vzroslyh: diagnostika, lechenie i profilaktika. Klinicheskie rekomendacii Ministerstva zdravoohranenija Rossijskoj Federacii. Ed by II Dedov, GA Mel’nichenko. Moscow; 2015. [cited 2021 Mar 17]. Available from: https://minzdrav.gov-murman.ru/documents/poryadki-okazaniya-meditsinskoy-pomoshchi/D %2019042014.pdf. (In Russ.)
  13. Kumar R, editors. Vitamin D: basic and clinical aspects. New York: Springer; 2012.
  14. Webb AR, Pilbeam C, Hanafin N, Holick MF. An evaluation of the relative contributions of exposure to sunlight and of diet to the circulating concentrations of 25-hydroxyvitamin D in an elderly nursing home population in Boston. Am J Clin Nutr. 1990;51(6):1075–1081. doi: 10.1093/ajcn/51.6.1075
  15. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96(1):365–408. doi: 10.1152/physrev.00014.2015
  16. Napiórkowska L, Franek E. Rola oznaczania witaminy D w praktyce klinicznej. Choroby Serca i Naczyń. 2009;6(4):203–210. [cited 2021 Mar 17]. Available from: https://journals.viamedica.pl/choroby_serca_i_naczyn/article/view/12035/9913
  17. Yu C, Xue H, Wang L, et al. Serum bioavailable and free 25-hydroxyvitamin D levels, but not its total level, are associated with the risk of mortality in patients with coronary Artery disease. Circ Res. 2018;123(8):996–1007. doi: 10.1161/CIRCRESAHA.118.313558
  18. Hossein-Nezhad A, Spira A, Holick MF. Influence of vitamin D status and vitamin D3 supplementation on genome wide expression of white blood cells: a randomized double-blind clinical trial. PLoS One. 2013;8(3):e58725. doi: 10.1371/journal.pone.0058725
  19. Wang Y, Zhu J, DeLuca HF. Where is the vitamin D receptor? Arch Biochem Biophys. 2012;523(1):123–133. doi: 10.1016/j.abb.2012.04.001
  20. Caprio M, Infante M, Calanchini M, et al. Vitamin D: not just the bone. Evidence for beneficial pleiotropic extraskeletal effects. Eat Weight Disord. 2017;22(1):27–41. doi: 10.1007/s40519-016-0312-6
  21. Gatti D, Idolazzi L, Fassio A. Vitamin D: not just bone, but also immunity. Minerva Med. 2016;107(6):452–460.
  22. White JH. Vitamin D metabolism and signaling in the immune system. Rev Endocr Metab Disord. 2012;13(1):21–29. doi: 10.1007/s11154-011-9195-z
  23. Prietl B, Treiber G, Pieber TR, Amrein K. Vitamin D and immune function. Nutrients. 2013;5:2502–2521. doi: 10.3390/nu5072502
  24. Overbergh L, Decallonne B, Valckx D, et al. Identification and immune regulation of 25-hydroxyvitamin D-1-alpha-hydroxylase in murine macrophages. Clin Exp Immunol. 2000;120(1):139–146. doi: 10.1046/j.1365-2249.2000.01204.x
  25. Stoffels K, Overbergh L, Giulietti A, et al. Immune regulation of 25-hydroxyvitamin-D3-1alpha-hydroxylase in human monocytes. J Bone Miner Res. 2006;21(1):37–47. doi: 10.1359/JBMR.050908
  26. Singh PK, van den Berg PR, Long MD, et al. Integration of VDR genome wide binding and GWAS genetic variation data reveals co-occurrence of VDR and NF-κB binding that is linked to immune phenotypes. BMC Genomics. 2017;18(1):132. doi: 10.1186/s12864-017-3481-4
  27. Jensen SS, Madsen MW, Lukas J, et al. Inhibitory effects of 1alpha,25-dihydroxyvitamin D(3) on the G(1)-S phase-controlling machinery. Mol Endocrinol. 2001;15(8):1370–1380. doi: 10.1210/mend.15.8.0673
  28. Piemonti L, Monti P, Sironi M, et al. Vitamin D3 affects differentiation, maturation, and function of human monocyte-derived dendritic cells. J Immunol. 2000;164(9):4443–4451. doi: 10.4049/jimmunol.164.9.4443
  29. Ferreira GB, Vanherwegen AS, Eelen G, et al. Vitamin D3 induces tolerance in human dendritic cells by activation of intracellular metabolic pathways. Cell Rep. 2015;10(5):711–725. doi: 10.1016/j.celrep.2015.01.013
  30. Amado Diago CA, García-Unzueta MT, Fariñas Mdel C, Amado JA. Calcitriol-modulated human antibiotics: New pathophysiological aspects of vitamin D. Endocrinol Nutr. 2016;63(2):87–94. doi: 10.1016/j.endonu.2015.09.005
  31. Korf H, Wenes M, Stijlemans B, et al. 1,25-Dihydroxyvitamin D3 curtails the inflammatory and T cell stimulatory capacity of macrophages through an IL-10-dependent mechanism. Immunobiology. 2012;217(12):1292–1300. doi: 10.1016/j.imbio.2012.07.018
  32. Zhang X, Zhou M, Guo Y, et al. 1,25-Dihydroxyvitamin D₃ Promotes High Glucose-Induced M1 Macrophage Switching to M2 via the VDR-PPARγ Signaling Pathway. Biomed Res Int. 2015;2015:157834. doi: 10.1155/2015/157834
  33. Zhang Y, Leung DY, Richers BN, et al. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J Immunol. 2012;188(5):2127–2135. doi: 10.4049/jimmunol.1102412
  34. Müller K, Heilmann C, Poulsen LK, Barington T, Bendtzen K. The role of monocytes and T cells in 1,25-dihydroxyvitamin D3 mediated inhibition of B cell function in vitro. Immunopharmacology. 1991;21(2):121–128. doi: 10.1016/0162-3109(91)90015-q
  35. Heine G, Anton K, Henz BM, Worm M. 1alpha,25-dihydroxyvitamin D3 inhibits anti-CD40 plus IL-4-mediated IgE production in vitro. Eur J Immunol. 2002;32(12):3395–3404. doi: 10.1002/1521-4141(200212)32:12<3395::AID-IMMU3395>3.0.CO;2-#
  36. Chen S, Sims GP, Chen XX, et al. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol. 2007;179(3):1634–1647. doi: 10.4049/jimmunol.179.3.1634
  37. Overbergh L, Decallonne B, Waer M, et al. 1alpha,25-dihydroxyvitamin D3 induces an autoantigen-specific T-helper 1/T-helper 2 immune shift in NOD mice immunized with GAD65 (p524-543). Diabetes. 2000;49(8):1301–1307. doi: 10.2337/diabetes.49.8.1301
  38. Boonstra A, Barrat FJ, Crain C, et al. 1alpha,25-Dihydroxyvitamin D3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J Immunol. 2001;167(9):4974–4980. doi: 10.4049/jimmunol.167.9.4974
  39. Dankers W, Colin EM, van Hamburg JP, Lubberts E. Vitamin D in autoimmunity: molecular mechanisms and therapeutic potential Front Immunol. 2017;7:697. doi: 10.3389/fimmu.2016.00697
  40. Cippitelli M, Santoni A. Vitamin D3: a transcriptional modulator of the interferon-gamma gene. Eur J Immunol. 1998;28(10):3017–3030. doi: 10.1002/(SICI)1521-4141(199810)28:10<3017::AID-IMMU3017>3.0.CO;2-6
  41. Chang SH, Chung Y, Dong C. Vitamin D suppresses Th17 cytokine production by inducing C/EBP homologous protein (CHOP) expression. J Biol Chem. 2010;285(50):38751–38755. doi: 10.1074/jbc.C110.185777
  42. Giulietti A, Gysemans C, Stoffels K, et al. Vitamin D deficiency in early life accelerates type 1 diabetes in non-obese diabetic mice. Diabetologia. 2004;47(3):451–462. doi: 10.1007/s00125-004-1329-3
  43. Mathieu C, Waer M, Casteels K, et al. Prevention of type I diabetes in NOD mice by nonhypercalcemic doses of a new structural analog of 1,25-dihydroxyvitamin D3, KH1060. Endocrinology. 1995;136(3):866–872. doi: 10.1210/endo.136.3.7867594
  44. Mathieu C, Laureys J, Sobis H, et al. 1,25-Dihydroxyvitamin D3 prevents insulitis in NOD mice. Diabetes. 1992;41(11):1491–1495. doi: 10.2337/diab.41.11.1491
  45. Gregori S, Giarratana N, Smiroldo S, et al. A 1alpha,25-dihydroxyvitamin D(3) analog enhances regulatory T-cells and arrests autoimmune diabetes in NOD mice. Diabetes. 2002;51(5):1367–1374. doi: 10.2337/diabetes.51.5.1367
  46. van Halteren AG, Tysma OM, van Etten E, et al. 1alpha,25-dihydroxyvitamin D3 or analogue treated dendritic cells modulate human autoreactive T cells via the selective induction of apoptosis. J Autoimmun. 2004;23(3):233–239. doi: 10.1016/j.jaut.2004.06.004
  47. Takiishi T, Ding L, Baeke F, et al. Dietary supplementation with high doses of regular vitamin D3 safely reduces diabetes incidence in NOD mice when given early and long term. Diabetes. 2014;63(6):2026–2036. doi: 10.2337/db13-1559
  48. Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol. 2009;5(4):219–226. doi: 10.1038/nrendo.2009.21
  49. Wei Z, Yoshihara E, He N, et al. Vitamin D switches BAF complexes to protect β cells. Cell. 2018;173(5):1135–1149.e15. doi: 10.1016/j.cell.2018.04.013
  50. Norman AW, Frankel JB, Heldt AM, Grodsky GM. Vitamin D deficiency inhibits pancreatic secretion of insulin. Science. 1980;209(4458):823–825. doi: 10.1126/science.6250216
  51. Bland R, Markovic D, Hills CE, et al. Expression of 25-hydroxyvitamin D3-1alpha-hydroxylase in pancreatic islets. J Steroid Biochem Mol Biol. 2004;89–90(1–5):121–125. doi: 10.1016/j.jsbmb.2004.03.115
  52. Johnson JA, Grande JP, Roche PC, Kumar R. Immunohistochemical localization of the 1,25(OH)2D3 receptor and calbindin D28k in human and rat pancreas. Am J Physiol. 1994;267(3 Pt 1):E356–E360. doi: 10.1152/ajpendo.1994.267.3.E356
  53. Maestro B, Dávila N, Carranza MC, Calle C. Identification of a Vitamin D response element in the human insulin receptor gene promoter. J Steroid Biochem Mol Biol. 2003;84(2–3):223–230. doi: 10.1016/s0960-0760(03)00032-3
  54. Bourlon PM, Billaudel B, Faure-Dussert A. Influence of vitamin D3 deficiency and 1,25 dihydroxyvitamin D3 on de novo insulin biosynthesis in the islets of the rat endocrine pancreas. J Endocrinol. 1999;160(1):87–95. doi: 10.1677/joe.0.1600087
  55. Alvarez JA, Ashraf A. Role of vitamin D in insulin secretion and insulin sensitivity for glucose homeostasis. Int J Endocrinol. 2010;2010:351385. doi: 10.1155/2010/351385
  56. Cade C, Norman AW. Vitamin D3 improves impaired glucose tolerance and insulin secretion in the vitamin D-deficient rat in vivo. Endocrinology. 1986;119(1):84–90. doi: 10.1210/endo-119-1-84
  57. Ramos-Lopez E, Brück P, Jansen T, et al. CYP2R1 (vitamin D 25-hydroxylase) gene is associated with susceptibility to type 1 diabetes and vitamin D levels in Germans. Diabetes Metab Res Rev. 2007;23(8):631–636. doi: 10.1002/dmrr.719
  58. Cooper JD, Smyth DJ, Walker NM, et al. Inherited variation in vitamin D genes is associated with predisposition to autoimmune disease type 1 diabetes. Diabetes. 2011;60(5):1624–1631. doi: 10.2337/db10-1656
  59. Bailey R, Cooper JD, Zeitels L, et al. Association of the vitamin D metabolism gene CYP27B1 with type 1 diabetes. Diabetes. 2007;56(10):2616–2621. doi: 10.2337/db07-0652
  60. Hussein AG, Mohamed RH, Alghobashy AA. Synergism of CYP2R1 and CYP27B1 polymorphisms and susceptibility to type 1 diabetes in Egyptian children. Cell Immunol. 2012;279(1):42–45. doi: 10.1016/j.cellimm.2012.08.006
  61. Thorsen SU, Mortensen HB, Carstensen B, et al. No association between type 1 diabetes and genetic variation in vitamin D metabolism genes: a Danish study. Pediatr Diabetes. 2014;15(6):416–421. doi: 10.1111/pedi.12105
  62. Norris JM, Lee HS, Frederiksen B, et al. Plasma 25-Hydroxyvitamin D concentration and risk of islet autoimmunity. Diabetes. 2018;67(1):146–154. doi: 10.2337/db17-0802
  63. Tapia G, Mårild K, Dahl SR, et al. Maternal and newborn vitamin D-binding protein, vitamin D levels, vitamin D receptor genotype, and childhood type 1 diabetes. Diabetes Care. 2019;42(4):553–559. doi: 10.2337/dc18-2176
  64. Habibian N, Amoli MM, Abbasi F, et al. Role of vitamin D and vitamin D receptor gene polymorphisms on residual beta cell function in children with type 1 diabetes mellitus. Pharmacol Rep. 2019;71(2):282–288. doi: 10.1016/j.pharep.2018.12.012
  65. You WP, Henneberg M. Type 1 diabetes prevalence increasing globally and regionally: the role of natural selection and life expectancy at birth. BMJ Open Diabetes Res Care. 2016;4(1):e000161. doi: 10.1136/bmjdrc-2015-000161
  66. Pettitt DJ, Talton J, Dabelea D, et al. Prevalence of diabetes in U.S. youth in 2009: the SEARCH for diabetes in youth study. Diabetes Care. 2014;37(2):402–408. doi: 10.2337/dc13-1838
  67. Mayer-Davis EJ, Lawrence JM, Dabelea D, et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. N Engl J Med. 2017;376(15):1419–1429. doi: 10.1056/NEJMoa1610187
  68. Karvonen M, Viik-Kajander M, Moltchanova E, et al. Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) Project Group. Diabetes Care. 2000;23(10):1516–1526. doi: 10.2337/diacare.23.10.1516
  69. Karvonen M, Jäntti V, Muntoni S, et al. Comparison of the seasonal pattern in the clinical onset of IDDM in Finland and Sardinia. Diabetes Care. 1998;21(7):1101–1109. Corrected and republished from: Diabetes Care. 1998;21(10):1784. doi: 10.2337/diacare.21.7.1101
  70. Ostman J, Lönnberg G, Arnqvist HJ, et al. Gender differences and temporal variation in the incidence of type 1 diabetes: results of 8012 cases in the nationwide Diabetes Incidence Study in Sweden 1983–2002. J Intern Med. 2008;263(4):386–394. doi: 10.1111/j.1365-2796.2007.01896.x
  71. Mohr SB, Garland CF, Gorham ED, Garland FC. The association between ultraviolet B irradiance, vitamin D status and incidence rates of type 1 diabetes in 51 regions worldwide. Diabetologia. 2008;51(8):1391–1398. doi: 10.1007/s00125-008-1061-5
  72. Pozzilli P, Manfrini S, Crinò A, et al. Low levels of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 in patients with newly diagnosed type 1 diabetes. Horm Metab Res. 2005;37(11):680–683. doi: 10.1055/s-2005-870578
  73. Greer RM, Portelli SL, Hung BS, et al. Serum vitamin D levels are lower in Australian children and adolescents with type 1 diabetes than in children without diabetes. Pediatr Diabetes. 2013;14(1):31–41. doi: 10.1111/j.1399-5448.2012.00890.x
  74. Federico G, Genoni A, Puggioni A, et al. Vitamin D status, enterovirus infection, and type 1 diabetes in Italian children/adolescents. Pediatr Diabetes. 2018;19(5):923–929. doi: 10.1111/pedi.12673
  75. Rasoul MA, Al-Mahdi M, Al-Kandari H, et al. Low serum vitamin-D status is associated with high prevalence and early onset of type-1 diabetes mellitus in Kuwaiti children. BMC Pediatr. 2016;16:95. doi: 10.1186/s12887-016-0629-3
  76. Littorin B, Blom P, Schölin A, et al. Lower levels of plasma 25-hydroxyvitamin D among young adults at diagnosis of autoimmune type 1 diabetes compared with control subjects: results from the nationwide Diabetes Incidence Study in Sweden (DISS). Diabetologia. 2006;49(12):2847–2852. doi: 10.1007/s00125-006-0426-x
  77. Bener A, Alsaied A, Al-Ali M, et al. High prevalence of vitamin D deficiency in type 1 diabetes mellitus and healthy children. Acta Diabetol. 2009;46(3):183–189. doi: 10.1007/s00592-008-0071-6
  78. Reinert-Hartwall L, Honkanen J, Härkönen T, et al. No association between vitamin D and β-cell autoimmunity in Finnish and Estonian children. Diabetes Metab Res Rev. 2014;30(8):749–760. doi: 10.1002/dmrr.2550
  79. Sørensen IM, Joner G, Jenum PA, et al. Maternal serum levels of 25-hydroxy-vitamin D during pregnancy and risk of type 1 diabetes in the offspring. Diabetes. 2012;61(1):175–178. doi: 10.2337/db11-0875
  80. Jacobsen R, Moldovan M, Vaag AA, et al. Vitamin D fortification and seasonality of birth in type 1 diabetic cases: D-tect study. J Dev Orig Health Dis. 2016;7(1):114–119. Corrected and republished from: J Dev Orig Health Dis. 2016;7(4):429. doi: 10.1017/S2040174415007849
  81. Miettinen ME, Reinert L, Kinnunen L, et al. Serum 25-hydroxyvitamin D level during early pregnancy and type 1 diabetes risk in the offspring. Diabetologia. 2012;55(5):1291–1294. doi: 10.1007/s00125-012-2458-8
  82. Dong JY, Zhang WG, Chen JJ, et al. Vitamin D intake and risk of type 1 diabetes: a meta-analysis of observational studies. Nutrients. 2013;5(9):3551–3562. doi: 10.3390/nu5093551
  83. Silvis K, Aronsson CA, Liu X, et al. Maternal dietary supplement use and development of islet autoimmunity in the offspring: TEDDY study. Pediatr Diabetes. 2019;20(1):86–92. doi: 10.1111/pedi.12794
  84. Hyppönen E, Läärä E, Reunanen A, et al. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet. 2001;358(9292):1500–1503. doi: 10.1016/S0140-6736(01)06580-1
  85. The EURODIAB Substudy 2 Study Group. Vitamin D supplement in early childhood and risk for Type I (insulin-dependent) diabetes mellitus. Diabetologia. 1999;42(1):51–54. doi: 10.1007/s001250051112
  86. Stene LC, Joner G; Norwegian Childhood Diabetes Study Group. Use of cod liver oil during the first year of life is associated with lower risk of childhood-onset type 1 diabetes: a large, population-based, case-control study. Am J Clin Nutr. 2003;78(6):1128–1134. doi: 10.1093/ajcn/78.6.1128
  87. Gorham ED, Garland CF, Burgi AA, et al. Lower prediagnostic serum 25-hydroxyvitamin D concentration is associated with higher risk of insulin-requiring diabetes: a nested case-control study. Diabetologia. 2012;55(12):3224–3227. doi: 10.1007/s00125-012-2709-8
  88. Munger KL, Levin LI, Massa J, et al. Preclinical serum 25-hydroxyvitamin D levels and risk of type 1 diabetes in a cohort of US military personnel. Am J Epidemiol. 2013;177(5):411–419. doi: 10.1093/aje/kws243
  89. Zhang J, Upala S, Sanguankeo A. Relationship between vitamin D deficiency and diabetic retinopathy: a meta-analysis. Can J Ophthalmol. 2017;52 Suppl 1:S39–S44. doi: 10.1016/j.jcjo.2017.09.026
  90. Engelen L, Schalkwijk CG, Eussen SJ, et al. Low 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 levels are independently associated with macroalbuminuria, but not with retinopathy and macrovascular disease in type 1 diabetes: the EURODIAB prospective complications study. Cardiovasc Diabetol. 2015;14:67. doi: 10.1186/s12933-015-0231-2
  91. Shimo N, Yasuda T, Kaneto H, et al. Vitamin D deficiency is significantly associated with retinopathy in young Japanese type 1 diabetic patients. Diabetes Res Clin Pract. 2014;106(2):e41–e43. doi: 10.1016/j.diabres.2014.08.005
  92. Felício KM, de Souza ACCB, Neto JFA, et al. Glycemic variability and insulin needs in patients with type 1 diabetes mellitus supplemented with vitamin D: A pilot study using continuous glucose monitoring system. Curr Diabetes Rev. 2018;14(4):395–403. doi: 10.2174/1573399813666170616075013
  93. Bogdanou D, Penna-Martinez M, Filmann N, et al. T-lymphocyte and glycemic status after vitamin D treatment in type 1 diabetes: A randomized controlled trial with sequential crossover. Diabetes Metab Res Rev. 2017;33(3): e2865. doi: 10.1002/dmrr.2865
  94. Mishra A, Dayal D, Sachdeva N, Attri SV. Effect of 6-months’ vitamin D supplementation on residual beta cell function in children with type 1 diabetes: a case control interventional study. J Pediatr Endocrinol Metab. 2016;29(4):395–400. doi: 10.1515/jpem-2015-0088
  95. Giri D, Pintus D, Burnside G, et al. Treating vitamin D deficiency in children with type I diabetes could improve their glycaemic control. BMC Res Notes. 2017;10(1):465. doi: 10.1186/s13104-017-2794-3
  96. Gabbay MA, Sato MN, Finazzo C, et al. Effect of cholecalciferol as adjunctive therapy with insulin on protective immunologic profile and decline of residual β-cell function in new-onset type 1 diabetes mellitus. Arch Pediatr Adolesc Med. 2012;166(7):601–607. doi: 10.1001/archpediatrics.2012.164
  97. Panjiyar RP, Dayal D, Attri SV, et al. Sustained serum 25-hydroxyvitamin D concentrations for one year with cholecalciferol supplementation improves glycaemic control and slows the decline of residual β cell function in children with type 1 diabetes. Pediatr Endocrinol Diabetes Metab. 2018;2018(3):111–117. doi: 10.5114/pedm.2018.80992
  98. Shih EM, Mittelman S, Pitukcheewanont P, et al. Effects of vitamin D repletion on glycemic control and inflammatory cytokines in adolescents with type 1 diabetes. Pediatr. Diabetes. 2016. Vol. 17. No. 1. P. 36–43. doi: 10.1111/pedi.12238
  99. Perchard R, Magee L, Whatmore A, et al. A pilot interventional study to evaluate the impact of cholecalciferol treatment on HbA1c in type 1 diabetes (T1D). Endocr Connect. 2017;6(4):225–231. doi: 10.1530/EC-17-0045
  100. Niinistö S, Takkinen HM, Erlund I, et al. Fatty acid status in infancy is associated with the risk of type 1 diabetes-associated autoimmunity. Diabetologia. 2017;60(7):1223–1233. doi: 10.1007/s00125-017-4280-9
  101. Bi X, Li F, Liu S, et al. ω-3 Polyunsaturated fatty acids ameliorate type 1 diabetes and autoimmunity. J Clin Invest. 2017;127(5):1757–1771. doi: 10.1172/JCI87388
  102. Stene LC, Ulriksen J, Magnus P, Joner G. Use of cod liver oil during pregnancy associated with lower risk of Type I diabetes in the offspring. Diabetologia. 2000;43(9):1093–1098. doi: 10.1007/s001250051499
  103. Scientific Advisory Committee on Nutrition [Internet]. SACN Vitamin D and Health Report. London; 2016. [cited 3 September 2019]. Available from: https://www.gov.uk/government/publications/sacn-vitamin-d-and-health-report
  104. Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–1930. doi: 10.1210/jc.2011-0385
  105. Mazahery H, von Hurst PR. Factors affecting 25-hydroxyvitamin D concentration in response to vitamin D supplementation. Nutrients. 2015;7(7):5111–5142. doi: 10.3390/nu7075111
  106. Rak K, Bronkowska M. Immunomodulatory effect of vitamin D and its potential role in the prevention and treatment of type 1 diabetes mellitus-A narrative review. Molecules. 2018;24(1):53. doi: 10.3390/molecules24010053

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Eсо-Vector



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».