Technology for early differential diagnosis of hypertensive disorders during pregnancy

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: To date, no test provides sufficient sensitivity and specificity for the early diagnosis of severe preeclampsia. Meanwhile, severe preeclampsia is a condition that threatens the life of not only the mother, but also the fetus, and requires a solution to the issue of delivery. Therefore, the search for markers of severe preeclampsia is still relevant today.

AIM: The aim of this study was to create a technology that allows for early differential diagnosis of hypertensive disorders during pregnancy based on a comprehensive analysis of echocardiographic data.

MATERIALS AND METHODS: Based on the data collected in the Regional Clinical Hospital Perinatal Center, Chita, Russia in 2018-2021, the retrospective analysis of 112 cases of labor was carried out. The total sample was divided into five study groups: 30 relatively healthy women (group 1); 25 patients with chronic arterial hypertension (group 2); 21 patients with gestational arterial hypertension (group 3); 13 patients with moderate preeclampsia (group 4); and 23 patients with severe preeclampsia (group 5). The groups were formed in accordance with current clinical guidelines. Echocardiographic examination in all cases was carried out upon admission to the hospital. Statistical processing of the results was performed using the IBM SPSS Statistics Version 25.0 program.

RESULTS: The technology for early differential diagnosis of hypertensive disorders during pregnancy is implemented based on a multilayer perceptron, the percentage of incorrect predictions being 20.5 %. The structure of the trained neural network included six input neurons: gestational age, left atrium size in the parasternal position, right ventricular size, interventricular septal thickness, systolic blood flow velocity, and pressure gradient in the pulmonary artery.

CONCLUSIONS: Comprehensive analysis of echocardiographic data allows for early differential diagnosis of hypertensive disorders during pregnancy, while considering the result of neural network analysis as an additional criterion for severe preeclampsia. In the future, the use of this technology in clinical practice will not only optimize the tactics of managing patients with hypertensive disorders at admission to the hospital, but also reduce the incidence of adverse obstetric and perinatal outcomes.

About the authors

Victor A. Mudrov

Chita State Medical Academy

Author for correspondence.
Email: mudrov_viktor@mail.ru
ORCID iD: 0000-0002-5961-5400
Scopus Author ID: 57204736023

MD, Cand. Sci. (Med.), PhDs in Medicine, assistant of professor of the obstetrics and gynecology department of the medical and dental faculties 

Russian Federation, 39a, Gorky St., Chita, 672000

Andrey A. Mudrov

State Novosibirsk Regional Clinical Hospital

Email: andrey.mudrov@mail.ru
ORCID iD: 0000-0002-8780-8007

MD, cardiovascular surgeon

Russian Federation, Novosibirsk

References

  1. Agrawal A, Wenger NK. Hypertension during pregnancy. Curr Hypertens Rep. 2020;22(9):64. doi: 10.1007/s11906-020-01070-0
  2. Spadarella E, Leso V, Fontana L, et al. Occupational risk factors and hypertensive Disorders in pregnancy: A systematic review. Int J Environ Res Public Health. 2021;18(16):8277. doi: 10.3390/ijerph18168277
  3. Akusherstvo: uchebnik. Ed. by V.E. Radzinsky, A.M. Fuks. Moscow: GEOTAR-Media; 2016. (In Russ.)
  4. Klinicheskie rekomendatsii (protokol lecheniya) No. 15-4/10/2-3483 “Gipertenzivnye rasstroystva vo vremya beremennosti, v rodakh i poslerodovom periode. Preeklampsiya. Eklampsiya”, utverzhdennye Ministerstvom zdravookhraneniya Rossiyskoy Federatsii 07.06.2016. (In Russ.). [cited 16 Sept 2021]. Available from: https://sudact.ru/law/pismo-minzdrava-rossii-ot-07062016-n-15-4102-3483/
  5. Armaly Z, Zaher M, Knaneh S, Abassi Z. Preeclampsia: pathogenesis and mechanisms based therapeutic approaches. Harefuah. 2019;158(11):742−747.
  6. Reddy M, Rolnik DL, Harris K, et al. Challenging the definition of hypertension in pregnancy: a retrospective cohort study. Am J Obstet Gynecol. 2020;222(6):606.e1−606.e21. doi: 10.1016/j.ajog.2019.12.272
  7. De Haas S, Ghossein-Doha C, Geerts L, et al. Cardiac remodeling in normotensive pregnancy and in pregnancy complicated by hypertension: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2017;50(6):683−696. doi: 10.1002/uog.17410
  8. Ul’trazvukovoe issledovanie serdca i sosudov. Ed. by O.Yu. Atkov. Moscow: Eksmo; 2015. (In Russ.)
  9. International Committee of Medical Journal Editors. Uniform requirements for manuscripts submitted to biomedical journals: writing and editing for biomedical publication. 2011. [cited 16 Sept 2021]. Available from: http://www.icmje.org/about-icmje/faqs/icmje-recommendations/
  10. Lang TA, Altman DG. Statistical analyses and methods in the published literature: The SAMPL guidelines. Medical Writing. 2016;25(3):31−36. doi: 10.18243/eon/2016.9.7.4
  11. Robles NR, Macias JF. Hypertension in the elderly. Cardiovasc Hematol Agents Med Chem. 2015;12(3):136−145. doi: 10.2174/1871525713666150310112350
  12. Sadov RI, Panova IA, Nazarov SB, et al. Changes in the indicators of thromboelastography and platelet function in pregnant women with various forms of hypertensive disorders in the third trimester of pregnancy. Klin Lab Diagn. 2020;65(5):281−288. doi: 10.18821/0869-2084-2020-65-5-281-288
  13. Katz D, Beilin Y. Disorders of coagulation in pregnancy. Br J Anaesth. 2015;115(Suppl 2):ii75−88. doi: 10.1093/bja/aev374
  14. Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 2014;345(6198):760−765. doi: 10.1126/science.1251816

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The configuration of a multilayer perceptron allows early differential diagnostics of hypertensive disorders during pregnancy. LA — left atrium; RV — right ventricle; IVS — interventricular septum; SVAB — systolic velocity of arterial blood flow; PG — pressure gradient

Download (237KB)
3. Fig. 2. Evaluation of the predicted pseudo-probability of diagnosing various hypertensive disorders in the study groups. CAH — chronic arterial hypertension; GAH — gestational arterial hypertension

Download (147KB)
4. Fig. 3. The area under ROC curves

Download (114KB)

Copyright (c) 2022 Eсо-Vector



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».