Потенциальная роль витамина D в профилактике и лечении сахарного диабета первого типа
- Авторы: Мишарина Е.В.1, Ярмолинская М.И.1,2, Абашова Е.И.1
-
Учреждения:
- Научно-исследовательский институт акушерства, гинекологии и репродуктологии им. Д.О. Отта
- Северо-Западный государственный медицинский университет им. И.И. Мечникова
- Выпуск: Том 70, № 2 (2021)
- Страницы: 91-105
- Раздел: Научные обзоры
- URL: https://journal-vniispk.ru/jowd/article/view/70955
- DOI: https://doi.org/10.17816/JOWD70955
- ID: 70955
Цитировать
Аннотация
Заболеваемость сахарным диабетом 1-го типа в мире увеличивается, также растет количество людей с недостатком витамина D во всех возрастных группах, включая детей и подростков. В последние десятилетия выявлено, что витамин D кроме регуляции гомеостаза кальция и метаболизма костей оказывает противовоспалительное и иммуномодулирующее действие. Эпидемиологические данные свидетельствуют о вовлечении дефицита витамина D в патогенез сахарного диабета 1-го типа. Полиморфизмы в генах, важных для метаболизма витамина D, также модулируют риск возникновения сахарного диабета 1-го типа. В ряде исследований была оценена роль витамина D в качестве адъювантной иммуномодулирующей терапии у пациентов с недавно выявленным сахарным диабетом 1-го типа. Цель данного обзора — представить современные данные об участии витамина D в патогенезе сахарного диабета 1-го типа и оценить его роль в качестве препарата для профилактики заболевания и дополнительного применения при инсулинотерапии.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Елена Владимировна Мишарина
Научно-исследовательский институт акушерства, гинекологии и репродуктологии им. Д.О. Отта
Email: mishellena@gmail.com
ORCID iD: 0000-0002-0276-7112
SPIN-код: 7350-5674
Scopus Author ID: 386281
ResearcherId: К-2720-2018
канд. мед. наук
Россия, 199034, Санкт-Петербург, Менделеевская линия, д. 3Мария Игоревна Ярмолинская
Научно-исследовательский институт акушерства, гинекологии и репродуктологии им. Д.О. Отта; Северо-Западный государственный медицинский университет им. И.И. Мечникова
Автор, ответственный за переписку.
Email: m.yarmolinskaya@gmail.com
ORCID iD: 0000-0002-6551-4147
SPIN-код: 3686-3605
Scopus Author ID: 7801562649
ResearcherId: P-2183-2014
д-р мед. наук, профессор, профессор РАН
Россия, 199034, Санкт-Петербург, Менделеевская линия, д. 3; Санкт-ПетербургЕлена Ивановна Абашова
Научно-исследовательский институт акушерства, гинекологии и репродуктологии им. Д.О. Отта
Email: abashova@yandex.ru
ORCID iD: 0000-0003-2399-3108
SPIN-код: 2133-0310
Scopus Author ID: 36503679200
ResearcherId: J-5436-2018
канд. мед. наук
Россия, 199034, Санкт-Петербург, Менделеевская линия, д. 3Список литературы
- Айламазян Э.К, Абашова Е.И., Аржанова О.Н. и др. Сахарный диабет и репродуктивная система женщины: руководство для врачей. Москва: ГЭОТАР-Медиа, 2017.
- Rewers M., Ludvigsson J. Environmental risk factors for type 1 diabetes // Lancet. 2016. Vol. 387. No. 10035. P. 2340–2348. doi: 10.1016/S0140-6736(16)30507-4
- Patterson CC, Dahlquist GG, Gyürüs E, Green A, Soltész G; EURODIAB Study Group. Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005-20: a multicentre prospective registration study // Lancet. 2009. Vol. 373. No. 9680. P. 2027–2033. doi: 10.1016/S0140-6736(09)60568-7
- Vehik K., Dabelea D. The changing epidemiology of type 1 diabetes: why is it going through the roof? // Diabetes. Metab. Res. Rev. 2011. Vol. 27. No. 1. P. 3–13. doi: 10.1002/dmrr.1141
- International Diabetes Federation [Internet]. IDF Diabetes Atlas. 8th edition. 2017. [дата обращения 17.09.2018]. Доступ по ссылке: https://diabetesatlas.org/upload/resources/previous/files/8/IDF_DA_8e-EN-final.pdf
- Infante M., Ricordi C., Sanchez J. et al. Influence of vitamin D on islet autoimmunity and beta-cell function in type 1 diabetes // Nutrients. 2019. Vol. 11. No. 9. P. 2185. doi: 10.3390/nu11092185
- Holick M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention // Rev. Endocr. Metab. Disord. 2017. Vol. 18. No. 2. P. 153–165. doi: 10.1007/s11154-017-9424-1
- Huh S.Y., Gordon C.M. Vitamin D deficiency in children and adolescents: epidemiology, impact and treatment // Rev. Endocr. Metab. Disord. 2008. Vol. 9. No. 2. P. 161–170. doi: 10.1007/s11154-007-9072-y
- Hilger J., Friedel A., Herr R. et al. A systematic review of vitamin D status in populations worldwide // Br. J. Nutr. 2014. Vol. 111. No. 1. P. 23–45. doi: 10.1017/S0007114513001840
- Lopes V.M., Lopes J.R., Brasileiro J.P. et al. Highly prevalence of vitamin D deficiency among Brazilian women of reproductive age // Arch. Endocrinol. Metab. 2017. Vol. 61. No. 1. P. 21–27. doi: 10.1590/2359-3997000000216
- Каронова Т.Л., Гринева Е.Н., Никитина И.Л. и др. Распространенность дефицита витамина D в Северо-Западном регионе РФ среди жителей г. Санкт-Петербурга и г. Петрозаводска // Остеопороз и остеопатии. 2013. Т. 16. № 3. С. 3–7. doi: 10.14341/osteo201333-7
- Пигарова Е.А., Рожинская Л.Я., Белая Ж.Е. и др. Дефицит витамина D у взрослых: диагностика, лечение и профилактика. Клинические рекомендации Министерства здравоохранения Российской Федерации / под ред. И.И. Дедов, Г.А. Мельниченко. Москва, 2015. [дата обращения: 17.03.21]. Доступ по ссылке: https://minzdrav.gov-murman.ru/documents/poryadki-okazaniya-meditsinskoy-pomoshchi/D %2019042014.pdf
- Kumar R., editors. Vitamin D: basic and clinical aspects. New York: Springer, 2012.
- Webb A.R., Pilbeam C., Hanafin N., Holick M.F. An evaluation of the relative contributions of exposure to sunlight and of diet to the circulating concentrations of 25-hydroxyvitamin D in an elderly nursing home population in Boston // Am. J. Clin. Nutr. 1990. Vol. 51. No. 6. P. 1075–1081. doi: 10.1093/ajcn/51.6.1075
- Christakos S., Dhawan P., Verstuyf A., Verlinden L., Carmeliet G. Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects // Physiol. Rev. 2016. Vol. 96. No. 1. P. 365–408. doi: 10.1152/physrev.00014.2015
- Napiórkowska L., Franek E. Rola oznaczania witaminy D w praktyce klinicznej // Choroby Serca i Naczyń. 2009. Vol. 6. No. 4. P. 203–210. [дата обращения: 17.03.21]. Доступ по ссылке: https://journals.viamedica.pl/choroby_serca_i_naczyn/article/view/12035/9913
- Yu C., Xue H., Wang L. et al. Serum bioavailable and free 25-Hydroxyvitamin D levels, but not its total level, are associated with the risk of mortality in patients with coronary Artery disease // Circ. Res. 2018. Vol. 123. No. 8. P. 996–1007. doi: 10.1161/CIRCRESAHA.118.313558
- Hossein-Nezhad A., Spira A., Holick M.F. Influence of vitamin D status and vitamin D3 supplementation on genome wide expression of white blood cells: a randomized double-blind clinical trial // PLoS One. 2013. Vol. 8. No. 3 P. e58725. doi: 10.1371/journal.pone.0058725
- Wang Y., Zhu J., DeLuca H.F. Where is the vitamin D receptor? // Arch. Biochem. Biophys. 2012. Vol. 523. No. 1. P. 123–133. doi: 10.1016/j.abb.2012.04.001
- Caprio M., Infante M., Calanchini M. et al. Vitamin D: not just the bone. Evidence for beneficial pleiotropic extraskeletal effects // Eat. Weight. Disord. 2017. Vol. 22. No. 1. P. 27–41. doi: 10.1007/s40519-016-0312-6
- Gatti D., Idolazzi L., Fassio A. Vitamin D: not just bone, but also immunity // Minerva Med. 2016. Vol. 107. No. 6. P. 452–460.
- White J.H. Vitamin D metabolism and signaling in the immune system // Rev. Endocr. Metab. Disord. 2012. Vol. 13. No. 1. P. 21–29. doi: 10.1007/s11154-011-9195-z
- Prietl B., Treiber G., Pieber T.R., Amrein K. Vitamin D and immune function // Nutrients. 2013. Vol. 5. P. 2502–2521. doi: 10.3390/nu5072502
- Overbergh L., Decallonne B., Valckx D. et al. Identification and immune regulation of 25-hydroxyvitamin D-1-alpha-hydroxylase in murine macrophages // Clin. Exp. Immunol. 2000. Vol. 120. No. 1. P. 139–146. doi: 10.1046/j.1365-2249.2000.01204.x
- Stoffels K., Overbergh L., Giulietti A. et al. Immune regulation of 25-hydroxyvitamin-D3-1alpha-hydroxylase in human monocytes // J. Bone. Miner. Res. 2006. Vol. 21. No. 1. P. 37–47. doi: 10.1359/JBMR.050908
- Singh P.K., van den Berg P.R., Long M.D. et al. Integration of VDR genome wide binding and GWAS genetic variation data reveals co-occurrence of VDR and NF-κB binding that is linked to immune phenotypes // BMC Genomics. 2017. Vol. 18. No. 1. P. 132. doi: 10.1186/s12864-017-3481-4
- Jensen S.S., Madsen M.W., Lukas J. et al. Inhibitory effects of 1alpha,25-dihydroxyvitamin D(3) on the G(1)-S phase-controlling machinery // Mol. Endocrinol. 2001. Vol. 15. No. 8. P. 1370–1380. doi: 10.1210/mend.15.8.0673
- Piemonti L., Monti P., Sironi M. et al. Vitamin D3 affects differentiation, maturation, and function of human monocyte-derived dendritic cells // J. Immunol. 2000. Vol. 164. No. 9. P. 4443–4451. doi: 10.4049/jimmunol.164.9.4443
- Ferreira G.B., Vanherwegen A.S., Eelen G. et al. Vitamin D3 induces tolerance in human dendritic cells by activation of intracellular metabolic pathways // Cell. Rep. 2015. Vol. 10. No. 5. P. 711–725. doi: 10.1016/j.celrep.2015.01.013
- Amado Diago C.A., García-Unzueta M.T., Fariñas Mdel C., Amado J.A. Calcitriol-modulated human antibiotics: New pathophysiological aspects of vitamin D // Endocrinol. Nutr. 2016. Vol. 63. No. 2. P. 87–94. doi: 10.1016/j.endonu.2015.09.005
- Korf H., Wenes M., Stijlemans B. et al. 1,25-Dihydroxyvitamin D3 curtails the inflammatory and T cell stimulatory capacity of macrophages through an IL-10-dependent mechanism // Immunobiology. 2012. Vol. 217. No. 12. P. 1292–1300. doi: 10.1016/j.imbio.2012.07.018
- Zhang X., Zhou M., Guo Y. et al. 1,25-Dihydroxyvitamin D₃ Promotes High Glucose-Induced M1 Macrophage Switching to M2 via the VDR-PPARγ Signaling Pathway // Biomed. Res. Int. 2015. Vol. 2015. P. 157834. doi: 10.1155/2015/157834
- Zhang Y., Leung D.Y., Richers B.N. et al. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1 // J. Immunol. 2012. Vol. 188. No. 5. P. 2127–2135. doi: 10.4049/jimmunol.1102412
- Müller K., Heilmann C., Poulsen L.K., Barington T., Bendtzen K. The role of monocytes and T cells in 1,25-dihydroxyvitamin D3 mediated inhibition of B cell function in vitro // Immunopharmacology. 1991. Vol. 21. No. 2. P. 121–128. doi: 10.1016/0162-3109(91)90015-q
- Heine G., Anton K., Henz B.M., Worm M. 1alpha,25-dihydroxyvitamin D3 inhibits anti-CD40 plus IL-4-mediated IgE production in vitro // Eur. J. Immunol. 2002. Vol. 32. No. 12. P. 3395–3404. doi: 10.1002/1521-4141(200212)32:12<3395::AID-IMMU3395>3.0.CO;2-#
- Chen S., Sims G.P., Chen X.X., et al. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation // J. Immunol. 2007. Vol. 179. No. 3. P. 1634–1647. doi: 10.4049/jimmunol.179.3.1634
- Overbergh L., Decallonne B., Waer M. et al. 1alpha,25-dihydroxyvitamin D3 induces an autoantigen-specific T-helper 1/T-helper 2 immune shift in NOD mice immunized with GAD65 (p524-543) // Diabetes. 2000. Vol. 49. No. 8. P. 1301–1307. doi: 10.2337/diabetes.49.8.1301
- Boonstra A., Barrat F.J., Crain C. et al. 1alpha,25-Dihydroxyvitamin D3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells // J. Immunol. 2001. Vol. 167. No. 9. P. 4974–4980. doi: 10.4049/jimmunol.167.9.4974
- Dankers W., Colin E.M., van Hamburg J.P., Lubberts E. Vitamin D in autoimmunity: molecular mechanisms and therapeutic potential // Front. Immunol. 2017. Vol. 7. P. 697. doi: 10.3389/fimmu.2016.00697
- Cippitelli M., Santoni A. Vitamin D3: a transcriptional modulator of the interferon-gamma gene // Eur. J. Immunol. 1998. Vol. 28. No. 10. P. 3017–3030. doi: 10.1002/(SICI)1521-4141(199810)28:10<3017::AID-IMMU3017>3.0.CO;2-6
- Chang S.H., Chung Y., Dong C. Vitamin D suppresses Th17 cytokine production by inducing C/EBP homologous protein (CHOP) expression // J. Biol. Chem. 2010. Vol. 285. No. 50. P. 38751–38755. doi: 10.1074/jbc.C110.185777
- Giulietti A., Gysemans C., Stoffels K. et al. Vitamin D deficiency in early life accelerates type 1 diabetes in non-obese diabetic mice // Diabetologia. 2004. Vol. 47. No. 3. P. 451–462. doi: 10.1007/s00125-004-1329-3
- Mathieu C., Waer M., Casteels K. et al. Prevention of type I diabetes in NOD mice by nonhypercalcemic doses of a new structural analog of 1,25-dihydroxyvitamin D3, KH1060 // Endocrinology. 1995. Vol. 136. No. 3. P. 866–872. doi: 10.1210/endo.136.3.7867594
- Mathieu C., Laureys J., Sobis H. et al. 1,25-Dihydroxyvitamin D3 prevents insulitis in NOD mice // Diabetes. 1992. Vol. 41. No. 11. P. 1491–1495. doi: 10.2337/diab.41.11.1491
- Gregori S., Giarratana N., Smiroldo S. et al. A 1alpha,25-dihydroxyvitamin D(3) analog enhances regulatory T-cells and arrests autoimmune diabetes in NOD mice // Diabetes. 2002. Vol. 51. No. 5. P. 1367–1374. doi: 10.2337/diabetes.51.5.1367
- van Halteren A.G., Tysma O.M., van Etten E. et al. 1alpha,25-dihydroxyvitamin D3 or analogue treated dendritic cells modulate human autoreactive T cells via the selective induction of apoptosis // J. Autoimmun. 2004. Vol. 23. No. 3. P. 233–239. doi: 10.1016/j.jaut.2004.06.004
- Takiishi T., Ding L., Baeke F. et al. Dietary supplementation with high doses of regular vitamin D3 safely reduces diabetes incidence in NOD mice when given early and long term // Diabetes. 2014. Vol. 63. No. 6. P. 2026–2036. doi: 10.2337/db13-1559
- Eizirik D.L., Colli M.L., Ortis F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes // Nat. Rev. Endocrinol. 2009. Vol. 5. No. 4. P. 219–226. doi: 10.1038/nrendo.2009.21
- Wei Z., Yoshihara E., He N. et al. Vitamin D switches BAF complexes to protect β cells // Cell. 2018. Vol. 173. No. 5. P. 1135–1149.e15. doi: 10.1016/j.cell.2018.04.013
- Norman A.W., Frankel J.B., Heldt A.M., Grodsky G.M. Vitamin D deficiency inhibits pancreatic secretion of insulin // Science. 1980. Vol. 209. No. 4458. P. 823–825. doi: 10.1126/science.6250216
- Bland R., Markovic D., Hills C.E. et al. Expression of 25-hydroxyvitamin D3-1alpha-hydroxylase in pancreatic islets // J. Steroid. Biochem. Mol. Biol. 2004. Vol. 89–90. No. 1–5. P. 121–125. doi: 10.1016/j.jsbmb.2004.03.115
- Johnson J.A., Grande J.P., Roche P.C., Kumar R. Immunohistochemical localization of the 1,25(OH)2D3 receptor and calbindin D28k in human and rat pancreas // Am. J. Physiol. 1994. Vol. 267. No. 3. Pt 1. P. E356–E360. doi: 10.1152/ajpendo.1994.267.3.E356
- Maestro B., Dávila N., Carranza M.C., Calle C. Identification of a Vitamin D response element in the human insulin receptor gene promoter // J. Steroid. Biochem. Mol. Biol. 2003. Vol. 84. No. 2–3. P. 223–230. doi: 10.1016/s0960-0760(03)00032-3
- Bourlon P.M., Billaudel B., Faure-Dussert A. Influence of vitamin D3 deficiency and 1,25 dihydroxyvitamin D3 on de novo insulin biosynthesis in the islets of the rat endocrine pancreas // J. Endocrinol. 1999. Vol. 160. No. 1. P. 87–95. doi: 10.1677/joe.0.1600087
- Alvarez J.A., Ashraf A. Role of vitamin d in insulin secretion and insulin sensitivity for glucose homeostasis // Int. J. Endocrinol. 2010. Vol. 2010. P. 351385. doi: 10.1155/2010/351385
- Cade C., Norman A.W. Vitamin D3 improves impaired glucose tolerance and insulin secretion in the vitamin D-deficient rat in vivo // Endocrinology. 1986. Vol. 119. No. 1. P. 84–90. doi: 10.1210/endo-119-1-84
- Ramos-Lopez E., Brück P., Jansen T. et al. CYP2R1 (vitamin D 25-hydroxylase) gene is associated with susceptibility to type 1 diabetes and vitamin D levels in Germans // Diabetes Metab. Res. Rev. 2007. Vol. 23. No. 8. P. 631–636. doi: 10.1002/dmrr.719
- Cooper J.D., Smyth D.J., Walker N.M. et al. Inherited variation in vitamin D genes is associated with predisposition to autoimmune disease type 1 diabetes // Diabetes. 2011. Vol. 60. No. 5. P. 1624–1631. doi: 10.2337/db10-1656
- Bailey R., Cooper J.D., Zeitels L. et al. Association of the vitamin D metabolism gene CYP27B1 with type 1 diabetes // Diabetes. 2007. Vol. 56. No. 10. P. 2616–2621. doi: 10.2337/db07-0652
- Hussein A.G., Mohamed R.H., Alghobashy A.A. Synergism of CYP2R1 and CYP27B1 polymorphisms and susceptibility to type 1 diabetes in Egyptian children // Cell. Immunol. 2012. Vol. 279. No. 1. P. 42–45. doi: 10.1016/j.cellimm.2012.08.006
- Thorsen S.U., Mortensen H.B., Carstensen B. et al. No association between type 1 diabetes and genetic variation in vitamin D metabolism genes: a Danish study // Pediatr. Diabetes. 2014. Vol. 15. No. 6. P. 416–421. doi: 10.1111/pedi.12105
- Norris J.M., Lee H.S., Frederiksen B. et al. Plasma 25-hydroxyvitamin D concentration and risk of islet autoimmunity // Diabetes. 2018. Vol. 67. No. 1. P. 146–154. doi: 10.2337/db17-0802
- Tapia G., Mårild K., Dahl S.R. et al. Maternal and newborn vitamin D-binding protein, vitamin D levels, vitamin D receptor genotype, and childhood type 1 diabetes // Diabetes Care. 2019. Vol. 42. No. 4. P. 553–559. doi: 10.2337/dc18-2176
- Habibian N., Amoli M.M., Abbasi F. et al. Role of vitamin D and vitamin D receptor gene polymorphisms on residual beta cell function in children with type 1 diabetes mellitus // Pharmacol. Rep. 2019. Vol. 71. No. 2. P. 282–288. doi: 10.1016/j.pharep.2018.12.012
- You W.P., Henneberg M. Type 1 diabetes prevalence increasing globally and regionally: the role of natural selection and life expectancy at birth // BMJ Open Diabetes Res. Care. 2016. Vol. 4. No. 1. P. e000161. doi: 10.1136/bmjdrc-2015-000161
- Pettitt D.J., Talton J., Dabelea D. et al. Prevalence of diabetes in U.S. youth in 2009: the SEARCH for diabetes in youth study // Diabetes Care. 2014. Vol. 37. No. 2. P. 402–408. doi: 10.2337/dc13-1838
- Mayer-Davis E.J., Lawrence J.M., Dabelea D. et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012 // N. Engl. J. Med. 2017. Vol. 376. No. 15. P. 1419–1429. doi: 10.1056/NEJMoa1610187
- Karvonen M., Viik-Kajander M., Moltchanova E. et al. Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) Project Group // Diabetes Care. 2000. Vol. 23. No. 10. P. 1516–1526. doi: 10.2337/diacare.23.10.1516
- Karvonen M., Jäntti V., Muntoni S. et al. Comparison of the seasonal pattern in the clinical onset of IDDM in Finland and Sardinia // Diabetes Care. 1998. Vol. 21. No. 7. P. 1101–1109. Corrected and republished from: Diabetes Care. 1998. Vol. 21. No. 10. P. 1784. doi: 10.2337/diacare.21.7.1101
- Ostman J., Lönnberg G., Arnqvist H.J. et al. Gender differences and temporal variation in the incidence of type 1 diabetes: results of 8012 cases in the nationwide Diabetes Incidence Study in Sweden 1983–2002 // J. Intern. Med. 2008. Vol. 263. No. 4. P. 386–394. doi: 10.1111/j.1365-2796.2007.01896.x
- Mohr S.B., Garland C.F., Gorham E.D., Garland F.C. The association between ultraviolet B irradiance, vitamin D status and incidence rates of type 1 diabetes in 51 regions worldwide // Diabetologia. 2008. Vol. 51. No. 8. P. 1391–1398. doi: 10.1007/s00125-008-1061-5
- Pozzilli P., Manfrini S., Crinò A. et al. Low levels of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 in patients with newly diagnosed type 1 diabetes // Horm. Metab. Res. 2005. Vol. 37. No. 11. P. 680–683. doi: 10.1055/s-2005-870578
- Greer R.M., Portelli S.L., Hung B.S. et al. Serum vitamin D levels are lower in Australian children and adolescents with type 1 diabetes than in children without diabetes // Pediatr. Diabetes. 2013. Vol. 14. No. 1. P. 31–41. doi: 10.1111/j.1399-5448.2012.00890.x
- Federico G., Genoni A., Puggioni A. et al. Vitamin D status, enterovirus infection, and type 1 diabetes in Italian children/adolescents // Pediatr. Diabetes. 2018. Vol. 19. No. 5. P. 923–929. doi: 10.1111/pedi.12673
- Rasoul M.A., Al-Mahdi M., Al-Kandari H. et al. Low serum vitamin-D status is associated with high prevalence and early onset of type-1 diabetes mellitus in Kuwaiti children // BMC Pediatr. 2016. Vol. 16. P. 95. doi: 10.1186/s12887-016-0629-3
- Littorin B., Blom P., Schölin A. et al. Lower levels of plasma 25-hydroxyvitamin D among young adults at diagnosis of autoimmune type 1 diabetes compared with control subjects: results from the nationwide Diabetes Incidence Study in Sweden (DISS) // Diabetologia. 2006. Vol. 49. No. 12. P. 2847–2852. doi: 10.1007/s00125-006-0426-x
- Bener A., Alsaied A., Al-Ali M. et al. High prevalence of vitamin D deficiency in type 1 diabetes mellitus and healthy children // Acta Diabetol. 2009. Vol. 46. No. 3. P. 183–189. doi: 10.1007/s00592-008-0071-6
- Reinert-Hartwall L., Honkanen J., Härkönen T. et al. No association between vitamin D and β-cell autoimmunity in Finnish and Estonian children // Diabetes Metab. Res. Rev. 2014. Vol. 30. No. 8. P. 749–760. doi: 10.1002/dmrr.2550
- Sørensen I.M., Joner G., Jenum P.A. et al. Maternal serum levels of 25-hydroxy-vitamin D during pregnancy and risk of type 1 diabetes in the offspring // Diabetes. 2012. Vol. 61. No. 1. P. 175–178. doi: 10.2337/db11-0875
- Jacobsen R., Moldovan M., Vaag A.A. et al. Vitamin D fortification and seasonality of birth in type 1 diabetic cases: D-tect study // J. Dev. Orig. Health. Dis. 2016. Vol. 7. No. 1. P. 114–119. Corrected and republished from: J. Dev. Orig. Health. Dis. 2016. Vol. 7. No. 4. P. 429. doi: 10.1017/S2040174415007849
- Miettinen M.E., Reinert L., Kinnunen L. et al. Serum 25-hydroxyvitamin D level during early pregnancy and type 1 diabetes risk in the offspring // Diabetologia. 2012. Vol. 55. No. 5. P. 1291–1294. doi: 10.1007/s00125-012-2458-8
- Dong J.Y., Zhang W.G., Chen J.J. et al. Vitamin D intake and risk of type 1 diabetes: a meta-analysis of observational studies // Nutrients. 2013. Vol. 5. No. 9. P. 3551–3562. doi: 10.3390/nu5093551
- Silvis K., Aronsson C.A., Liu X. et al. Maternal dietary supplement use and development of islet autoimmunity in the offspring: TEDDY study // Pediatr. Diabetes. 2019. Vol. 20. No. 1. P. 86–92. doi: 10.1111/pedi.12794
- Hyppönen E., Läärä E., Reunanen A. et al. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study // Lancet. 2001. Vol. 358. No. 9292. P. 1500–1503. doi: 10.1016/S0140-6736(01)06580-1
- The EURODIAB Substudy 2 Study Group. Vitamin D supplement in early childhood and risk for Type I (insulin-dependent) diabetes mellitus // Diabetologia. 1999. Vol. 42. No. 1. P. 51–54. doi: 10.1007/s001250051112
- Stene L.C., Joner G.; Norwegian Childhood Diabetes Study Group. Use of cod liver oil during the first year of life is associated with lower risk of childhood-onset type 1 diabetes: a large, population-based, case-control study // Am. J. Clin. Nutr. 2003. Vol. 78. No. 6. P. 1128–1134. doi: 10.1093/ajcn/78.6.1128
- Gorham E.D., Garland C.F., Burgi A.A. et al. Lower prediagnostic serum 25-hydroxyvitamin D concentration is associated with higher risk of insulin-requiring diabetes: a nested case-control study // Diabetologia. 2012. Vol. 55. No. 12. P. 3224–3227. doi: 10.1007/s00125-012-2709-8
- Munger K.L., Levin L.I., Massa J. et al. Preclinical serum 25-hydroxyvitamin D levels and risk of type 1 diabetes in a cohort of US military personnel // Am. J. Epidemiol. 2013. Vol. 177. No. 5. P. 411–419. doi: 10.1093/aje/kws243
- Zhang J., Upala S., Sanguankeo A. Relationship between vitamin D deficiency and diabetic retinopathy: a meta-analysis // Can. J. Ophthalmol. 2017. Vol. 52. Suppl. 1. P. S39–S44. doi: 10.1016/j.jcjo.2017.09.026
- Engelen L., Schalkwijk C.G., Eussen S.J. et al. Low 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 levels are independently associated with macroalbuminuria, but not with retinopathy and macrovascular disease in type 1 diabetes: the EURODIAB prospective complications study // Cardiovasc. Diabetol. 2015. Vol. 14. P. 67. doi: 10.1186/s12933-015-0231-2
- Shimo N., Yasuda T., Kaneto H. et al. Vitamin D deficiency is significantly associated with retinopathy in young Japanese type 1 diabetic patients // Diabetes Res. Clin. Pract. 2014. Vol. 106. No. 2. P. e41–e43. doi: 10.1016/j.diabres.2014.08.005
- Felício K.M., de Souza A.C.C.B., Neto J.F.A. et al. Glycemic variability and insulin needs in patients with type 1 diabetes mellitus supplemented with vitamin D: A pilot study using continuous glucose monitoring system // Curr. Diabetes. Rev. 2018. Vol. 14. No. 4. P. 395–403. doi: 10.2174/1573399813666170616075013
- Bogdanou D., Penna-Martinez M., Filmann N. et al. T-lymphocyte and glycemic status after vitamin D treatment in type 1 diabetes: A randomized controlled trial with sequential crossover // Diabetes Metab. Res. Rev. 2017. Vol. 33. No. 3. P. e2865. doi: 10.1002/dmrr.2865
- Mishra A., Dayal D., Sachdeva N., Attri S.V. Effect of 6-months’ vitamin D supplementation on residual beta cell function in children with type 1 diabetes: a case control interventional study // J. Pediatr. Endocrinol. Metab. 2016. Vol. 29. No. 4. P. 395–400. doi: 10.1515/jpem-2015-0088
- Giri D., Pintus D., Burnside G. et al. Treating vitamin D deficiency in children with type I diabetes could improve their glycaemic control // BMC Res. Notes. 2017. Vol. 10. No. 1. P. 465. doi: 10.1186/s13104-017-2794-3
- Gabbay M.A., Sato M.N., Finazzo C. et al. Effect of cholecalciferol as adjunctive therapy with insulin on protective immunologic profile and decline of residual β-cell function in new-onset type 1 diabetes mellitus // Arch. Pediatr. Adolesc. Med. 2012. Vol. 166. No. 7. P. 601–607. doi: 10.1001/archpediatrics.2012.164
- Panjiyar R.P., Dayal D., Attri S.V. et al. Sustained serum 25-hydroxyvitamin D concentrations for one year with cholecalciferol supplementation improves glycaemic control and slows the decline of residual β cell function in children with type 1 diabetes // Pediatr. Endocrinol. Diabetes. Metab. 2018. Vol. 2018. No. 3. P. 111–117. doi: 10.5114/pedm.2018.80992
- Shih E.M., Mittelman S., Pitukcheewanont P. et al. Effects of vitamin D repletion on glycemic control and inflammatory cytokines in adolescents with type 1 diabetes // Pediatr. Diabetes. 2016. Vol. 17. No. 1. P. 36–43. doi: 10.1111/pedi.12238
- Perchard R., Magee L., Whatmore A. et al. A pilot interventional study to evaluate the impact of cholecalciferol treatment on HbA1c in type 1 diabetes (T1D) // Endocr. Connect. 2017. Vol. 6. No. 4. P. 225–231. doi: 10.1530/EC-17-0045
- Niinistö S., Takkinen H.M., Erlund I. et al. Fatty acid status in infancy is associated with the risk of type 1 diabetes-associated autoimmunity // Diabetologia. 2017. Vol. 60. No. 7. P. 1223–1233. doi: 10.1007/s00125-017-4280-9
- Bi X., Li F., Liu S. et al. ω-3 Polyunsaturated fatty acids ameliorate type 1 diabetes and autoimmunity // J. Clin. Invest. 2017. Vol. 127. No. 5. P. 1757–1771. doi: 10.1172/JCI87388
- Stene L.C., Ulriksen J., Magnus P., Joner G. Use of cod liver oil during pregnancy associated with lower risk of type I diabetes in the offspring // Diabetologia. 2000. Vol. 43. No. 9. P. 1093–1098. doi: 10.1007/s001250051499
- Scientific Advisory Committee on Nutrition [Internet]. SACN vitamin D and health report. London, 2016. [дата обращения 3.09.2019]. Доступ по ссылке: https://www.gov.uk/government/publications/sacn-vitamin-d-and-health-report
- Holick M.F., Binkley N.C., Bischoff-Ferrari H.A. et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline // J. Clin. Endocrinol. Metab. 2011. Vol. 96. No. 7. P. 1911–1930. doi: 10.1210/jc.2011-0385
- Mazahery H., von Hurst P.R. Factors affecting 25-hydroxyvitamin D concentration in response to vitamin D supplementation // Nutrients. 2015. Vol. 7. No. 7. P. 5111–5142. doi: 10.3390/nu7075111
- Rak K., Bronkowska M. Immunomodulatory effect of vitamin D and its potential role in the prevention and treatment of type 1 diabetes mellitus-A narrative review // Molecules. 2018. Vol. 24. No. 1. P. 53. doi: 10.3390/molecules24010053
Дополнительные файлы
