Redox control of tumor cell apoptosis during hypoxia
- Authors: Nosareva O.L.1, Stepovaya E.A.1, Shakhristova E.V.1, Pashkovskiy D.V.1, Rublevskiy V.B.1
-
Affiliations:
- Siberian State Medical University
- Issue: Vol 104, No 3 (2023)
- Pages: 381-392
- Section: Reviews
- URL: https://journal-vniispk.ru/kazanmedj/article/view/145697
- DOI: https://doi.org/10.17816/KMJ112512
- ID: 145697
Cite item
Abstract
Currently, close attention is paid to studies aimed at searching for redox-sensitive targets for the regulation of tumor cell death. Tumor growth is characterized by impaired cell proliferation, differentiation, and apoptosis against the background of oxidative stress. Hypoxia contributes to the formation of mitochondrial dysfunction and acts as an additional factor that exacerbates oxidative stress in the tumor cell. Reactive oxygen species are general damaging factors, however, they can act as modulators of processes such as reception, intracellular signaling, proliferation, apoptosis, while taking part in the functioning of the cell redox system and contributing to the oxidative modification of macromolecules. One of the possible reasons for the activation of the production of reactive oxygen species is the low content of O2 in the cell, the final electron acceptor to ensure the functioning of the enzymes of the mitochondrial respiratory chain. The glutathione system makes a significant contribution to maintaining the balance between prooxidants and antioxidants in the cell. The role of this system is justified by the reduction potential of glutathione, which, acting as an acceptor of hydroxyl ions and singlet oxygen, significantly reduces the cytotoxic and damaging effects of reactive oxygen species. At the same time, it serves as a coenzyme for glutathione-dependent enzymes, which play a leading role not only in providing antioxidant processes, but also in maintaining the thiol disulfide balance. Hypoxia, which acts as a factor in the activation of free radical oxidation against the background of proliferation and apoptosis dysregulation, contributes to the formation of resistance of tumor cells to chemotherapeutic effects. In light of this, the importance of studying the redox-dependent mechanisms involved in the regulation and implementation of tumor cell death under insufficient oxygen supply becomes obvious, which is necessary for the development of personalized antitumor therapy. The article presents a review of modern literature, including the results of our own research, on the role of the thiol disulfide system and oxidatively modified proteins in the redox regulation of proliferation and apoptotic death of tumor cells, including under hypoxic conditions.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Ol'ga L. Nosareva
Siberian State Medical University
Author for correspondence.
Email: olnosareva@yandex.ru
ORCID iD: 0000-0002-7441-5554
M.D., D. Sci. (Med.), Prof., Depart. of Biochemistry and Molecular Biology with Course of Clinical Laboratory Diagnostics
Russian Federation, Tomsk, RussiaElena A. Stepovaya
Siberian State Medical University
Email: muir@mail.ru
ORCID iD: 0000-0001-9339-6304
M.D., D. Sci. (Med.), Prof., Depart. of Biochemistry and Molecular Biology with Course of Clinical Laboratory Diagnostics
Russian Federation, Tomsk, RussiaEvgenija V. Shakhristova
Siberian State Medical University
Email: shaxristova@yandex.ru
ORCID iD: 0000-0003-2938-1137
M.D., Cand. Sci. (Med.), Assoc. Prof., Depart. of Biochemistry and Molecular Biology with Course of Clinical Laboratory Diagnostics
Russian Federation, Tomsk, RussiaDaniil V. Pashkovskiy
Siberian State Medical University
Email: danpash86@gmail.com
ORCID iD: 0000-0003-4590-0400
student
Russian Federation, Tomsk, RussiaVyacheslav B. Rublevskiy
Siberian State Medical University
Email: rublevskiyvb1@yandex.ru
ORCID iD: 0000-0002-1195-098X
student
Russian Federation, Tomsk, RussiaReferences
- D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–592. doi: 10.1002/cbin.11137.
- Garg AD, Dudek-Peric AM, Romano E, Agostinis P. Immunogenic cell death. Int J Dev Biol. 2015;59(1–3):131–140. doi: 10.1387/ijdb.150061pa.
- Goldar S, Khaniani MS, Derakhshan SM, Baradaran B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev. 2015;16(6):2129–2144. doi: 10.7314/apjcp.2015.16.6.2129.
- Ciccarese F, Ciminale V. Escaping death: mitochondrial redox homeostasis in cancer cells. Front Oncol. 2017;7:117. doi: 10.3389/fonc.2017.00117.
- Nosareva OL, Stepovaya EA, Ryazantseva NV, Zakirova EV, Mazunin IO, Litvinova LS, Sokhonevich NA, Vesnina ON, Shakhristova EV. Disruption of expression of mRNA Hsp27 and ubiquitin as a mechanism of escaping from apotosis of jurkat line tumor cells. Bulletin of Siberian Medicine. 2015;14(1):66–72. (In Russ.)
- Shakhristova EV, Stepovaya EA, Nosareva OL, Rudikov EV, Egorova MYu, Egorova DYu, Novitsky VV. The role of glutaredoxin and glutathione in proliferation of breast cancer cells under the effect of 1,4-dithio-erythriol, a thiol group protector. Siberian Scientific Medical Journal. 2017;37(3):5–10. (In Russ.)
- Avolio R, Matassa DS, Criscuolo D, Landriscina M, Esposito F. Modulation of mitochondrial metabolic reprogramming and oxidative stress to overcome chemoresistance in cancer. Biomolecules. 2020;10(1):135. doi: 10.3390/biom10010135.
- Marchi S, Patergnani S, Missiroli S, Morciano G, Rimessi A, Wieckowski MR, Giorgi C, Pinton P. Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium. 2018;69:62–72. doi: 10.1016/j.ceca.2017.05.003.
- Yang Y, Karakhanova S, Hartwig W, D’Haese JG, Philippov PP, Werner J, Bazhin AV. Mitochondria and mitochondrial ROS in сancer: Novel targets for anticancer therapy. J Cell Physiol. 2016;231(12):2570–2581. doi: 10.1002/jcp.25349.
- Bak DW, Weerapana E. Cysteine-mediated redox signalling in the mitochondria. Mol Biosyst. 2015;11(3):678–697. doi: 10.1039/c4mb00571f.
- Chen Y, Zhang H, Zhou HJ, Ji W, Min W. Mitochondrial redox signaling and tumor progression. Cancers (Basel). 2016;8(4):40. doi: 10.3390/cancers8040040.
- Kirtonia A, Sethi G, Garg M. The multifaceted role of reactive oxygen species in tumorigenesis. Cell Mol Life Sci. 2020;77(22):4459–4483. doi: 10.1007/s00018-020-03536-5.
- Gill JG, Piskounova E, Morrison SJ. Cancer, oxidative stress, and metastasis. Cold Spring Harb Symp Quant Biol. 2016;81:163–175. doi: 10.1101/sqb.2016.81.030791.
- Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol. 2018;80:50–64. doi: 10.1016/j.semcdb.2017.05.023.
- Nosareva OL, Orlov DS, Shakhristova EV, Stepovaya EA. Molecular mechanisms of the effects of n-ethylmaleimide and 1,4-dithioerythritol on regulation of apoptosis in p19 cells under hypoxia. Bulletin of Siberian Medicine. 2020;19(2):72–77. (In Russ.) doi: 10.20538/1682-0363-2020-2-72-77.
- Nosareva OL, Orlov DS, Shakhristova EV, Stepovaya EA, Sadykova AA. Effect of n-acetylcysteine on apoptosis of p19 cancer cells during hypoxia. Siberian journal of oncology. 2020;19(3):102–108. (In Russ.) doi: 10.21294/1814-4861-2020-19-3-102-108.
- Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D. Ferroptosis: Process and function. Cell Death Differ. 2016;23(3):369–379. doi: 10.1038/cdd.2015.158.
- Saxena K, Jolly MK. Acute vs. chronic vs. cyclic hypoxia: Their differential dynamics, molecular mechanisms, and effects on tumor progression. Biomolecules. 2019;9(8):339. doi: 10.3390/biom9080339.
- Koblyakov VA. Hypoxic state and glycolysis as a possible anticancer therapeutic target. Uspekhi molekulyarnoy onkologii. 2014;(2):44–49. (In Russ.)
- Kulikov VA, Belyaeva LE. Metabolic reprogramming of cancer cells. Vestnik of Vitebsk State Medical University. 2013;12(2):6–18. (In Russ.)
- Marchi S, Bittremieux M, Missiroli S, Morganti C, Patergnani S, Sbano L, Rimessi A, Kerkhofs M, Parys JB, Bultynck G, Giorgi C, Pinton P. Endoplasmic reticulum-mitochondria communication through Ca2+ signaling: The importance of mitochondria-associated membranes (MAMs). Adv Exp Med Biol. 2017;997:49–67. doi: 10.1007/978-981-10-4567-7_4.
- Webb JD, Coleman M, Pugh CW. Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing. Cell Mol Life Sci. 2009;66(22):3539–3554. doi: 10.1007/s00018-009-0147-7.
- Shvetsova AN, Mennerich D, Kerätär JM, Hiltunen JK, Kietzmann T. Non-electron transfer chain mitochondrial defects differently regulate HIF-1α degradation and transcription. Redox Biol. 2017;12:1052–1061. doi: 10.1016/j.redox.2017.05.003.
- Klimova T, Chandel NS. Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ. 2008;15(4):660–666. doi: 10.1038/sj.cdd.4402307.
- Hempel N, Trebak M. Crosstalk between calcium and reactive oxygen species signaling in cancer. Cell Calcium. 2017;63:70–96. doi: 10.1016/j.ceca.2017.01.007.
- Fong GH, Takeda K. Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ. 2008;15(4):635–641. doi: 10.1038/cdd.2008.10.
- Zhao S, El-Deiry WS. Identification of Smurf2 as a HIF-1α degrading E3 ubiquitin ligase. Oncotarget. 2021;12(20):1970–1979. doi: 10.18632/oncotarget.28081.
- Rashid M, Zadeh LR, Baradaran B, Molavi O, Ghesmati Z, Sabzichi M, Ramezani F. Up-down regulation of HIF-1α in cancer progression. Gene. 2021;798:145796. doi: 10.1016/j.gene.2021.145796.
- Berchner-Pfannschmidt U, Tug S, Kirsch M, Fandrey J. Oxygen-sensing under the influence of nitric oxide. Cell Signal. 2010;22(3):349–356. doi: 10.1016/j.cellsig.2009.
- Hill RP, Marie-Egyptienne DT, Hedley DW. Cancer stem cells, hypoxia and metastasis. Semin Radiat Oncol. 2009;19(2):106–111. doi: 10.1016/j.semradonc.2008.
- Kobliakov V. HIFα as a target for different oncoproteins during carcinogenesis. Advances Mol Oncol. 2018;5:64–71. doi: 10.17650/2313-805X-2018-5-4-64-71.
- Xie H, Simon MC. Oxygen availability and metabolic reprogramming in cancer. J Biol Chem. 2017;292(41):16825–16832. doi: 10.1074/jbc.R117.799973.
- Chen W, Ostrowski RP, Obenaus A, Zhang JH. Prodeath or prosurvival: Two facets of hypoxia inducible factor-1 in perinatal brain injury. Exp Neurol. 2009;216(1):7–15. doi: 10.1016/j.expneurol.2008.10.016.
- Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008;8(11):851–864. doi: 10.1038/nrc2501.
- Kulikov VA, Belyaeva LE. On bioenergetics of a tumoral cell. Vestnik of Vitebsk State Medical University. 2015;14(6):5–14. (In Russ.)
- Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010;29(5):625–634. doi: 10.1038/onc.2009.441.
- Heddleston JM, Li Z, Lathia JD, Bao S, Hjelmeland AB, Rich JN. Hypoxia inducible factors in cancer stem cells. Br J Cancer. 2010;102(5):789–795. doi: 10.1038/sj.bjc.6605551.
- Pinto MC, Kihara AH, Goulart VA, Tonelli FM, Gomes KN, Ulrich H, Resende RR. Calcium signaling and cell proliferation. Cell Signal. 2015;27(11):2139–2149. doi: 10.1016/j.cellsig.2015.08.006.
- Patergnani S, Danese A, Bouhamida E, Aguiari G, Previati M, Pinton P, Giorgi C. Various aspects of calcium signaling in the regulation of apoptosis, autophagy, cell proliferation, and cancer. Int J Mol Sci. 2020;21(21):8323. doi: 10.3390/ijms21218323.
- Cui C, Merritt R, Fu L, Pan Z. Targeting calcium signaling in cancer therapy. Acta Pharm Sin B. 2017;7(1):3–17. doi: 10.1016/j.apsb.2016.11.001.
- Wang M, Tan J, Miao Y, Li M, Zhang Q. Role of Ca2+ and ion channels in the regulation of apoptosis under hypoxia. Histol Histopathol. 2018;33(3):237–246. doi: 10.14670/HH-11-918.
- Men’shchikova EB, Zenkov NK, Lankin VZ, Bondar’ IA, Trufakin VA. Oxidative stress: Pathological states and diseases. Novosibirsk: Sibirskoe Universitetskoe Izdatel’stvo; 2017. 284 р. (In Russ.)
- Chatterjee R, Chatterjee J. ROS and oncogenesis with special reference to EMT and stemness. Eur J Cell Biol. 2020;9(2–3):151073. doi: 10.1016/j.ejcb.2020.151073.
- Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2000;275(33):25130–25138. doi: 10.1074/jbc.M001914200.
- Dubinina EE. Products of oxygen metabolism in the functional activity of cells (life and death, creation and destruction). Physiological, clinical and biochemical aspects. St. Petersburg: Medical Press; 2006. 400 p. (In Russ.)
- Kalinina E, Novichkova M. Glutathione in protein redox modulation through S-glutathionylation and S-nitrosylation. Molecules. 2021;26(2):435. doi: 10.3390/molecules26020435.
- Nosareva OL, Stepovaya EA, Shakhristova EV, Alekseeva ON, Kuzmenko DI, Sadykova AA, Novitsky VV. The role of redox status and oxidative modification of proteins in implementing apoptosis in human blood lymphocytes in norm and under experimental oxidative stress. Russian Journal of Physiology. 2019;105(3):327–338. (In Russ.) doi: 10.1134/S0869813919030063.
- Shakhristova EV, Stepovaya EA, Ryazantseva NV, Nosareva OL, Yakushina VD, Ivanov VV, Novitsky VV. The role of protein oxidative modification and the cellular redox status in realization of apoptosis of MCF-7 breast adenocarcinoma cells. Biology Bulletin. 2016;43(5):385–389. doi: 10.1134/S1062359016050095.
- Orlov DS, Ryazantseva NV, Stepovaya EA, Nosareva OL, Shakhristova EV, Ivanov VV. Redox-dependent mechanisms of apoptosis dysregulation in tumor cells under hypoxia. Siberian Scientific Medical Journal. 2017;37(1):21–26. (In Russ.)
- Nosareva OL, Stepovaya EA, Ryazantseva NV, Shakhristova EV, Egorova MY, Novitsky VV. The role of the glutathione system in oxidative modification of proteins and dysregulation of apoptosis in Jurkat tumor cells. Bull Exp Biol Med. 2017;164(2):199–202. doi: 10.1007/s10517-017-3957-x.
- Nelson D, Cox M. Lehninger Principles of Biochemistry. In three volumes. Translation from English. Moscow: Binom. Laboratoriya znaniy; 2014. Vol. 2. 640 p. (In Russ.)
- Herb M, Gluschko A, Schramm M. Reactive oxygen species: Not omnipresent but important in many locations. Front Cell Dev Biol. 2021;9:716406. doi: 10.3389/fcell.2021.716406.
- Chio IIC, Tuveson DA. ROS in Cancer: The Burning Question. Trends Mol Med. 2017;23(5):411–429. doi: 10.1016/j.molmed.2017.03.004.
- Kalinina EV, Gavriliuk LA. Glutathione synthesis in cancer cells. Biochemistry (Moscow). 2020;85(8):895–907. doi: 10.1134/S0006297920080052.
- Kalinina EV, Chernov NN, Novichkova MD. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. Biochemistry (Mosc). 2014;79(13):1562–1583. doi: 10.1134/S0006297914130082.
- Poole LB. The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med. 2015;80:148–157. doi: 10.1016/j.freeradbiomed.2014.11.013.
- Kulinsky VI, Kolesnichenko LS. Nuclear glutathione and its functions. Biomeditsinskaya Khimiya. 2010;56(6):657–662. (In Russ.) doi: 10.18097/pbmc20105606657.
- Desideri E, Ciccarone F, Ciriolo MR. Targeting glutathione metabolism: partner in crime in anticancer therapy. Nutrients. 2019;11(8):1926. doi: 10.3390/nu11081926.
- Shakhristova EV, Stepovaya EA, Nosareva OL, Rudikov EV, Novitsky VV. Glutathione and glutaredoxin in roscovitine-mediated inhibition of breast cancer cell proliferation. Annals of the Russian Academy of Medical Scien-ces. 2017;72(4):261–267. (In Russ.) doi: 10.15690/vramn849.
- Deponte M. The incomplete glutathione puzzle: just guessing at numbers and figures? Antioxid Redox Signal. 2017;27(15):1130–1161. doi: 10.1089/ars.2017.7123.
- Traverso N, Ricciarelli R, Nitti M, Marengo B, Furfaro AL, Pronzato MA, Marinari UM, Domenicotti C. Role of glutathione in cancer progression and chemoresistance. Oxid Med Cell Longev. 2013;2013:972913. doi: 10.1155/2013/972913.
- Scirè A, Cianfruglia L, Minnelli C, Bartolini D, Torquato P, Principato G, Galli F, Armeni T. Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways. Biofactors. 2019;45(2):152–168. doi: 10.1002/biof.1476.
- Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 2017;11:613–619. doi: 10.1016/j.redox.2016.12.035.
- Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. 2017;86:715–748. doi: 10.1146/annurev-biochem-061516-045037.
- Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018;217(6):1915–1928. doi: 10.1083/jcb.201708007.
- Idelchik MDPS, Begley U, Begley TJ, Melendez JA. Mitochondrial ROS control of cancer. Semin Cancer Biol. 2017;47:57–66. doi: 10.1016/j.semcancer.2017.04.005.
- Nikitina OA, Darenskaya MA, Semenova NV, Kolesnikova LI. Antioxidant defense system: regulation of metabolic processes, genetic determinants, methods of determination. Siberian Scientific Medical Journal. 2022;42(3):4–17. (In Russ.) doi: 10.18699/SSMJ20220301.
- Bunik VI. Redox-driven signaling: 2-oxo acid dehydrogenase complexes as sensors and transmitters of metabolic imbalance. Antioxid Redox Signal. 2019;30(16):1911–1947. doi: 10.1089/ars.2017.7311.
- Sies H. Role of metabolic H2O2 generation: Redox signaling and oxidative stress. J Biol Chem. 2014;289(13):8735–8741. doi: 10.1074/jbc.R113.544635.
- Nicholls DG. Mitochondrial membrane potential and aging. Aging Cell. 2004;3(1):35–40. doi: 10.1111/j.1474-9728.2003.00079.x.
- Castro L, Tórtora V, Mansilla S, Radi R. Aconitases: non-redox iron-sulfur proteins sensitive to reactive species. Acc Chem Res. 2019;52(9):2609–2619. doi: 10.1021/acs.accounts.9b00150.
- Salmeen A, Andersen JN, Myers MP, Meng TC, Hinks JA, Tonks NK, Barford D. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature. 2003;423(6941):769–773. doi: 10.1038/nature01680.
- Putker M, Vos HR, Dansen TB. Intermolecular disulfide-dependent redox signalling. Biochem Soc Trans. 2014;42(4):971–978. doi: 10.1042/BST20140097.
- Lo Conte M, Carroll KS. The redox biochemistry of protein sulfenylation and sulfinylation. J Biol Chem. 2013;288(37):26480–26488. doi: 10.1074/jbc.R113.467738.
- Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science. 2004;304(5670):596–600. doi: 10.1126/science.1095569.
- Sabens Liedhegner EA, Gao XH, Mieyal JJ. Mechanisms of altered redox regulation in neurodegenerative diseases — focus on S-glutathionylation. Antioxid Redox Signal. 2012;16(6):543–566. doi: 10.1089/ars.2011.4119.
- Nosareva OL, Stepovaya EA, Ryazantseva NV, Shakhristova EV, Vesnina ON, Novitsky VV. The role of protein oxidative modification in redox-regulation of caspase-3 activity in blood lymphocytes during oxidative stress in vitro. Bulletin of Siberian Medicine. 2015;14(6):61–67. (In Russ.)
- Miller CG, Holmgren A, Arnér ESJ, Schmidt EE. NADPH-dependent and -independent disulfide reductase systems. Free Radic Biol Med. 2018;127:248–261. doi: 10.1016/j.freeradbiomed.2018.03.051.
- Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radic Biol Med. 2014;66:75–87. doi: 10.1016/j.freeradbiomed.2013.07.036.
- Veal EA, Day AM, Morgan BA. Hydrogen peroxide sensing and signaling. Mol Cell. 2007;26(1):1–14. doi: 10.1016/j.molcel.2007.03.016.
- Ren X, Sengupta R, Lu J, Lundberg JO, Holmgren A. Characterization of mammalian glutaredoxin isoforms as S-denitrosylases. FEBS Lett. 2019;593(14):1799–1806. doi: 10.1002/1873-3468.13454.
- Kehrer JP. The Haber–Weiss reaction and mechanisms of toxicity. Toxicology. 2000;149(1):43–50. doi: 10.1016/s0300-483x(00)00231-6.
- Cao C, Leng Y, Huang W, Liu X, Kufe D. Glutathione peroxidase 1 is regulated by the c-Abl and Arg tyrosine kinases. J Biol Chem. 2003;278(41):39609–39614. doi: 10.1074/jbc.M305770200.
- Kulinsky VI, Kolesnichenko LS. Glutathione system. I. Synthesis, transport, glutathione transferases, glutathione peroxidases. Biomeditsinskaya Khimiya. 2009;55(3):255–277. (In Russ.)
- Steinbrenner H, Speckmann B, Klotz LO. Selenoproteins: antioxidant selenoenzymes and beyond. Arch Biochem Biophys. 2016;595:113–119. doi: 10.1016/j.abb.2015.06.024.
- Paukert T, Sailer R, Strauss WS, Schubert-Zsilavecz M, Zimmer A. Glutathione peroxidase isoenzymes in human tumor cell lines. Pharmazie. 2011;66(11):894–898. PMID: 22204137.
- Coimbra-Costa D, Alva N, Duran M, Carbonell T, Rama R. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain. Redox. Biol. 2017;12:216–225. doi: 10.1016/j.redox.2017.02.014.
- Tang JY, Ou-Yang F, Hou MF, Huang HW, Wang HR, Li KT, Fayyaz S, Shu CW, Chang HW. Oxidative stress-modulating drugs have preferential anticancer effects — involving the regulation of apoptosis, DNA damage, endoplasmic reticulum stress, autophagy, metabolism, and migration. Semin Cancer Biol. 2019;58:109–117. doi: 10.1016/j.semcancer.2018.08.010.
Supplementary files
