Prospects for the creation of new drug candidates with antidepressant activity among thietanes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article presents the results of systematic studies on the search for new biologically active molecules with antidepressant activity in the series of thietane-containing heterocyclic compounds and 3-substituted thietane dioxides. The used strategy for the search for antidepressant substances, based on in vivo pharmacological screening in combination with in silico methods of mathematical modeling and toxico-pharmacokinetic evaluation, is described. Studies of the biological activity of thietane-containing reaction products of azoles with thiiranes have been carried out in the series of thietanylimidazoles, titanixanthines, thietanyltriazoles, thietanyltriazolones, and 3-substituted thietane-1,1-dioxides (more than 300 compounds have been studied). The main results of the preclinical evaluation of promising drug candidates with antidepressant activity, 3-methoxythiethane-1,1-dioxide and 3-ethoxythiethane-1,1-dioxide, are presented. Both 3-substituted thietane-1,1-dioxides are characterized by low toxicity when administered intraperitoneally to mice (class IV “low toxicity”), the absence of toxic risks (mutagenic, carcinogenic, reproductive toxicity, local irritant action), high pharmaceutical potential (compliance with the rule of five Lipinsky), a wide range of action and pronounced antidepressant activity, not inferior to the reference drug amitriptyline (10 mg/kg), confirmed in highly valid in vivo models of depressive-like states (chronic mild stress and resident intruder). In tests of neuropharmacological interaction, it was found that the proposed mechanism of action of 3-substituted thietane-1,1-dioxides is associated with stimulation of 5-HT1A receptors, blockade of 5-HT2A/2C receptors and/or α2-adrenergic receptors. The need for further research is substantiated in order to create domestic “first in class” antidepressants on their basis.

About the authors

Irina L. Nikitina

Bashkir State Medical University

Email: irennixleo@gmail.com
ORCID iD: 0000-0002-6283-5762

M.D., D. Sci. (Med.), Prof., Depart. of Pharmacology with a Course of Clinical Pharmaco­logy

Russian Federation, Ufa, Russia

Gulnara G. Gaisina

Bashkir State Medical University

Email: gulnara_gaisina@list.ru
ORCID iD: 0000-0002-1936-3720

Assistant, Depart. of Pharmacology with a Course of Clinical Pharmacology

Russian Federation, Ufa, Russia

Elena E. Klen

Bashkir State Medical University

Email: klen_elena@yahoo.com
ORCID iD: 0000-0001-7538-6030

D. Sci. (Pharm.), Assoc. Prof., Head of Depart., Depart. of Pharmaceutical Chemistry with Courses of Analytical and Toxicological Chemistry

Russian Federation, Ufa, Russia

Galina A. Rozit

Bashkir State Medical University

Email: rozit1993@mail.ru
ORCID iD: 0000-0002-7935-8675

Head, Laboratory for the Search for Small Target Molecules

Russian Federation, Ufa, Russia

Alexander V. Samorodov

Bashkir State Medical University

Author for correspondence.
Email: AVSamorodov@gmail.com
ORCID iD: 0000-0001-9302-499X

M.D., D. Sci. (Med.), Assoc. Prof., Head of Depart., Depart. of Pharmacology with a Course of Clinical Pharmacology

Russian Federation, Ufa, Russia

References

  1. Block E. Thietanes, thietes and fused-ring derivatives. In: Katritzky AR, Rees CW, eds. Comprehensive heterocyclic chemistry. Pergamon; 1984. р. 403–447. doi: 10.1016/B978-008096519-2.00120-X.
  2. Haya K. Thietanes as potential MAO inhibitors and analgetics. PhD Thesis. University of British Columbia; 1973. 260 р.
  3. Wells JN, Abbott FS. Thietane 1,1-dioxides. J Med Chem. 1966;9(4):489–492. doi: 10.1021/jm00322a009.
  4. Leung CC. Thietane 1,1-dioxides as potential analgetics of the methadone type. PhD Thesis. University of British Columbia; 1978. 236 р.
  5. Leśniak S, Kinart WJ, Lewkowski J. 2.07 — Thietanes and thietes: Monocyclic. In: Katritzky AR, Ramsden CA, Scriven EFV, Taylor RJK, eds. Comprehensive Heterocyclic Chemistry III. Elsevier; 2008. р. 389–428. doi: 10.1016/B978-008044992-0.00207-8.
  6. Danilov DS. Multimodal serotonergic antidepressants. Zhurnal Nevrologii i Psikhiatrii im SS Korsakova. 2017;117(9):103–111. (In Russ.) doi: 10.17116/jnevro201711791103-111.
  7. Akhapkin RV, Bukreeva ND, Vazagaeva TI, Kostyukova EG, Mazo GE, Mosolov SN. Depressivnyy epizod. Rekurrentnoe depressivnoe rasstroystvo. Klinicheskie rekomendatsii. (Depressive episode. Recurrent depressive disorder. Clinical recommendations.) Rossiyskoe obshchestvo psikhiatrov; 2021. 88 р. (In Russ.)
  8. Kapfhammer H. Somatic symptoms in depression. Dialogues in Clinical Neuroscience. 2006;8:227–239. doi: 10.31887/DCNS.2006.8.2/hpkapfhammer.
  9. Smulevich EB, Dubnitskaia EB. Depressions in primary medical care. Psi-khicheskie rasstroystva v obshchey meditsine. 2010;(1):4–12. (In Russ.)
  10. WHO. Depression and other common mental disorders: Global health estimates. 2017. https://apps.who.int/iris/handle/10665/254610 (access date: 01.07.2023).
  11. Bueno-Notivol J, Gracia-García P, Olaya B, Lasheras I, López-Antón R, Santabárbara J. Prevalence of depression during the COVID-19 outbreak: A meta-analysis of community-based studies. Int J Clin Health Psychol. 2021;21(1):100196. doi: 10.1016/j.ijchp.2020.07.007.
  12. WHO. COVID-19 pandemic triggers 25% increase in prevalence of anxiety and depression worldwide. 2022. https://www.who.int/news/item/02-03-2022-covid-19-pandemic-triggers-25-increase-in-prevalence-of-anxiety-and-depression-worldwide (access date: 01.07.2023).
  13. Morozov PV, Bekker RA, Bykov YV. On the possible role of some psychotropic medications in the therapy of COVID-19 infection (brief literature review). Experimental and clinical pharmacology. 2021;84(2):104–112. (In Russ.) doi: 10.30906/0869-2092-2021-84-2-104-112.
  14. COVID-19 Mental Disorders Collaborators. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet. 2021;398(10312):1700–1712. doi: 10.1016/S0140-6736(21)02143-7.
  15. Alekhin ЕK, Nikitina IL, Ivanova OA, Gabidullin RA. Thietan contained heterocycles — a new class of antidepressant substances. Vestnik Bashkirskogo gosudarstvennogo meditsinskogo universiteta. 2012;(2):332–341. (In Russ.)
  16. Sander T, Freyss J, von Korff M, Rufener C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J Chem Inf Model. 2015;55(2):460–473. doi: 10.1021/ci500588j.
  17. Sander T. Molecular properties prediction — osiris property explorer. Organic Chemistry Portal. https://www.organic-chemistry.org/prog/peo (access date: 11.07.2019).
  18. Kedzierska E, Wach I. Using tests and models to assess antidepressant-like activity in rodents. Current Issues in Pharmacy and Medical Sciences. 2016;29(2):61–65. doi: 10.1515/cipms-2016-0013.
  19. Val'dman AV, Poshivalov VP. Farmakologicheskaya regulyatsiya vnutrividovogo povedeniya. (Pharmacological regulation of intraspecific behavior.) L.: Meditsina; 1984. 208 р. (In Russ.)
  20. Gabidullin RA, Ivanova OA, Nikitina IL. Svidetelstvo o gosudarstvennoy registratsii programmy dlya EVM №2008610170. (Certificate of state registration of the computer program №2008610170.) Published online 2008. (In Russ.)
  21. Khaliullin FA, Klen EE, Shabalina YuV, Magadeeva GF, Davletyarova AV. Synthesis and prospects of practical application of the reaction products of nitrogen-containing heterocycles with thiiranes. Vestnik Bashkirskogo gosudarstvennogo meditsinskogo universiteta. 2012;(2):350–356. (In Russ.)
  22. Khaliuliin FA, Kataev VA, Strokin YuV. Alkylation of xanthine and benzimidazole derivatives with epithiochlorohydrin. Chem Heterocycl Compd. 1991;27(4):410–412. doi: 10.1007/BF00480840.
  23. Klen EE, Khaliullin FA, Iskhakova GF. Reaction of 3,5-dibromo-1,2,4-triazole with 2-chloromethylthiirane. Russ J Org Chem. 2005;12(41):1847–1848. doi: 10.1007/s11178-006-0047-3.
  24. Khaliullin FA, Klen EE. Thietane ring as a novel protecting group. Russ J Org Chem. 2009;45(1):135–138. doi: 10.1134/S1070428009010187.
  25. Meshcheryakova SA, Kataev VA. Synthesis of new thietanylpyrimidine and thietanylimidazole derivatives. Russ J Org Chem. 2013;49(9):1358–1360. doi: 10.1134/S1070428013090200.
  26. Khaliullin FA, Valieva AR, Magadeeva GF. Hydrazinolysis of dimethyl 2-bromo-1-(thietan-3-yl)-1H-imidazole-4,5-dicarboxylates. Russ J Org Chem. 2015;51(1):91–94. doi: 10.1134/S1070428015010157.
  27. Khaliullin FА, Klen EE, Makarova NN, Shepilova SO, Baikova IP. Reactions of thiiranes with NH-heterocycles 1. An investigation of the reaction of 2-chloromethylthiirane with 3,5-dibromo-4-nitropyrazole. Chem Heterocycl Compd. 2020;56(9):1213–1217. doi: 10.1007/s10593-020-02800-7.
  28. Pathania S, Narang RK, Rawal RK. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur J Med Chem. 2019;180:486–508. doi: 10.1016/j.ejmech.2019.07.043.
  29. Dobrovolskiy AV. Approaches to clinical development of combination medicines in the Russian Federation and the Eurasian Economic Union in view of the requirements of the current legislation. Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. 2019;9(1):14–27. (In Russ.) doi: 10.30895/1991-2919-2019-9-1-14-27.
  30. Kataev VA, Turenkov IN, Meshcheryakova SA, Perfilova VN, Munasipova DA, Borodin DD. Synthesis and hypotensive activity of pyrimidine-2,4-(1H,3H)-dione derivatives containing thiethane cycles with sulfur atom in various oxidation states. Pharm Chem J. 2014;48(7):434–438. doi: 10.1007/s11094-014-1126-3.
  31. thietanyl-3 doi: 10.1007/BF00770624.
  32. Khaliullin FA, Alyokhin EK, Klen EE, Ryabchinskaya LA, Kataev VA, Bogdanova ASh. Synthesis and immunotropic activity of (benzimidazolyl-2-thio)acetic acid derivatives containing thietane cycles. Pharm Chem J. 2001;35(1):11–14. doi: 10.1023/A:1010490324092.
  33. Spasov AA, Khaliullin FA, Babkov DA, Timirkhanova GA, Kuznetsova VA, Naumenko LV, Muleeva DR, Maika OYu, Prokhorova TY, Sturova EA. Synthesis and antidiabetic activity of thiazolo[2,3-f]purine derivatives and their analogues. Pharm Chem J. 2017;51(7):533–539. doi: 10.1007/s11094-017-1649-5.
  34. Klen EE, Khaliullin FA, Spasov AA, Makarova NN, Bagautdinova LF, Naumenko LV. Synthesis and rheological activity of new 1,2,4-triazole derivatives. Pharm Chem J. 2008;42(9):510–512. doi: 10.1007/s11094-009-0171-9.
  35. Gurevich KG, Urakov AL, Klen EE, Samorodov AV, Nikitina IL, Khaliullin FA, Nebogatova VA, Makarova NN, Shepilova SO, Bashirova LI, Halimov AR. Synthesis and Biological Activity of Ethyl 2-[8-Arylmethylidenehydrazino-3-Methyl-7-(1-Oxothietan-3-YL)Xanth-1-YL]Acetates. Pharm Chem J. 2020;54(3):213–219. doi: 10.1007/s11094-020-02182-2.
  36. Khaliullin FA, Klen EE, Pavlov VN, Samorodov AV, Shepilova SO, Makarova NN, Nurlanova SN, Abzalilov TA. Synthesis and biological activity of 5-alkoxy and 5-amino-substituted 3-bromo-4-nitro-1-(thietan-3-yl)-1H-pyrazoles. Pharm Chem J. 2022;56(3):316–320. doi: 10.30906/0023-1134-2022-56-3-15-20.
  37. Klen EE, Khaliullin FA, Nikitina IL, Alekhin EK, Bulgakov AK, Gabidullin ZG. Synthesis and biological activity of arylmethylenehydrazides of (benzimidazolyl-2-thio)acetic acids containing thietane cycles. Pharmaceutical chemistry journal. 2002;36(11):591–594. (In Russ.) doi: 10.1023/A:1022661130814.
  38. Klen EE, Nikitina IL, Khaliullin FA, Iskhakova GF, Alekhin EK, Ivanova OA. Synthesis and biological activity of 5-substituted 3-bromo-1-(thietanyl-3)-1,2,4-triazoles. Problems of Biological, Medical and Pharmaceutical Chemistry. 2010;(7):42–45. (In Russ.)
  39. Valeeva LA, Davlyatova GG, Shabalina YuV, Isakova AV, Khaliullin FA, Nikitina IL. Synthesis and antidepressant properties of 2-[3-methyl-7-(thietanyl-3)-1-ethylxanthinyl-8-thio] acetic acid hydrazides. Pharm Chem J. 2016;50(6):358–361. doi: 10.1007/s11094-016-1451-9.
  40. Valeeva LA, Davlyatova GG, Nikitina IL, Gaysina GR. Promising antidepressant among xantine derivatives. Bashkortostan medical newsletter. 2018;13(3):50–54. (In Russ.)
  41. Davlyatova GG, Valeeva LA, Khaliullin FA, Nikitina IL, Kadyrova EA, Bakhtigareeva AA. Study of the antidepressant properties of 3-methyl-7-(1,1-dioxothiethanyl-3)-8-cyclohexylamine-1-ethylxanthine at chronic introduction. Bashkortostan medical newsletter. 2017;12(6):61–63. (In Russ.)
  42. Shabalina YV, Khaliullin FA, Nikitina IL, Miftakhova AF, Sharafutdinov RM. Synthesis and antidepressant activity of 8-amino-substituted 1-butyl-3-methyl-xanthines containing a thietane ring. Pharm Chem J. 2020;53(11):1009–1012. doi: 10.1007/s11094-020-02114-0.
  43. Klen EE, Khaliullin FA, Agzamova LF, Nikitina IL, Alekhin EK, Ivanova OA, Gabidullin RA. Synthesis and antidepressant activity of esters of 2-(3-bromo-1,2,4-triazolyl-5-thioacetic acids containing a thietane ring. Bashkirskiy khimicheskiy zhurnal. 2008;15(4):21–22. (In Russ.)
  44. Klen EE, Makarova NN, Khaliullin FA, Alekhin EK, Nikitina IL, Ivanova OA, Gabidullin RA. Synthesis and antidepressant activity of thietane-containing 5-aryloxy-3-brom-1,2,4-triazoles. Bashkirskiy khimicheskiy zhurnal. 2008;15(4):112–114. (In Russ.)
  45. Klen EE, Nikitina IL, Ivanova OA, Makarova NN, Khaliullin FA. Synthesis of new 2-[3-bromo-1-(1,1-dioxothietan-3-yl)-1,2,4-triazolyl-5-thio] acetic acid derivatives with antidepressant activity. Problems of Biological, Medical and Pharmaceutical Chemistry. 2017;20(12):4–9. (In Russ.)
  46. Khaliullin FA, Klen EE, Nikitina IL, Pavlov VN, Rozit GA, Gaysina GG, Samorodov AV. Synthesis and antidepressant activity of tiethane-containing 4-(2-oxo-2-phenylethyl)-1Н-1,2,4-triazol-4-ium bromides. Pharm Chem J. 2022;56(12):1596–1603. doi: 10.30906/0023-1134-2022-56-12-27-34.
  47. Klen EE, Nikitina IL, Rozit GA, Gaysina GG, Khaliullin FA, Samorodov AV, Pavlov VN. 1-(1,1-dioxotiethan-3-yl)-4-(2-oxo-2-phenylethil)-1,2,4-triazol-4-ium bromide, showing antidepressive activity. Patent for invention RF No. RU2785340C1. Bull. No. 34 from 06.12.2022. (In Russ.)
  48. Klen EE, Nikitina IL, Gilmanova AG, Miftakhova AF, Ivanova OA, Khaliullin FA, Alekhin EK. 5-Bromo-2-(thietan-3-yl)-2,4-dihydro-3H-1,2,4-triazol-3-one derivatives, exhibiting antidepressant activity. Patent for invention RF No. 2459818C1. Bull. No. 24 from 27.08.2012. (In Russ.)
  49. Khaliullin FA, Nikitina IL, Klen EE, Miftakhova AF, Makarova NN, Gabidullin RA, Gilmanova AG. Synthesis and antidepressant activity of 4-alkyl-5-bromo-2,4-dihydro-2-(thietan-3-yl)-1,2,4-triazol-3-ones. Pharm Chem J. 2021;55(2):123–129. doi: 10.30906/0023-1134-2021-55-2-13-19.
  50. Miftakhova AF, Nikitina IL, Gabidullin RA. Study of anti-depressive action mechanism of a new derivative of 1-(thietanyl-3) imidazoles in tests of neuropharmacological interaction. Bashkortostan medical newsletter. 2021;16(1):52–57. (In Russ.)
  51. Khaliullin FA, Nikitina IL, Valieva AR, Miftakhova AF, Khalilov LM, Mescheryakova ES. Synthesis and antidepressant activity of 2-bromo-1-(thietan-3-yl)-imidazole-4,5-dicarboxylic acid derivatives. Int J Pharm Pharm Sci. 2017;9(8):154–160. doi: 10.22159/ijpps.2017v9i8.17613.
  52. Ivanova OA, Nikitina IL, Alekhin EK, Miftahova AF. The effect of new derivatives of tietan-1,1-dioxide on some mediator systems of the brain. Kazan Medical Journal. 2012;93(1):108–112. (In Russ.) doi: 10.17816/KMJ2158.
  53. Ivanova OA. Characteristics of antidepressant activity and mechanism of action of new thietan-1,1-dioxide derivatives. https://bashgmu.ru/upload/dissovet/ivanova.pdf (access date: 01.07.2023). (In Russ.)
  54. Klen EE, Nikitina IL, Makarova NN, Miftakhova AF, Ivanova OA. 3-substituted thietane 1,1-dioxides: Synthesis, antidepressant activity and in silico prediction of pharmacokinetic and toxicological properties. Pharm Chem J. 2017;50:642–648. doi: 10.1007/s11094-017-1506-6.
  55. Ivanova OA, Nikitina IL, Gabidullin RA, Alekhin EK, Klen EE, Makarova NN, Khaliullin FA. Study of antidepressive activity and safety profile of new thietan-1,1-dioxyde derivatives. Siberian Journal of Clinical and Experimental Medicine. 2011;26(1-1):127–131. (In Russ.)
  56. Nikitina IL, Beeraka NM, Gaisina GG, Bulygin KV, Galimova EF, Galimov SN, Nikolenko VN, Mikhaleva LM, Somasundaram SG, Kirkland CE, Avila-Rodriguez M, Aliev G. In vivo antidepressant efficacy of 3-substituted thietane-1, 1-dioxide derivative — a preliminary study for novel anti-depression therapy in neurological disorders. CNS Neurol Disord Drug Targets. 2021;20(10):982–995. doi: 10.2174/1871527320666210301115028.
  57. Nikitina IL, Gabidullin RA, Klen EE, Alekhin EK, Khaliullin FA, Tyurina LA. Computer analysis of the structure — antidepressant activity relationship in series of 1,2,4-triazole and thietane-1,1-dioxide derivatives. Pharmaceutical Chemistry Journal. 2012;46(4):213–218. doi: 10.1007/s11094-012-0764-6.
  58. Gaisina GG, Lukmanova AR, Umutkuzina DA, Valitova EF, Vorobieva VS. Zoosocial interaction: a method for studying antidepressants. Vestnik Bashkirskogo gosudarstvennogo meditsinskogo universiteta. 2018;(3):1655–1659. (In Russ.)
  59. Khaliullin FA, Nikitina IL, Klen EE, Gaisina GG, Makarova NN. Synthesis, antidepressant activity and prediction of toxic risks in 3-alkoxy(sulfanyl)thietane 1,1-dioxides. Pharm Chem J. 2020;53:1106–1112. doi: 10.30906/0023-1134-2019-53-12-8-15.
  60. Gaisina GG, Nikitina IL. Study of the range of effective doses of a new 3-substituted thietane-1,1-dioxide derivative. Bashkortostan medical newsletter. 2020;15(6):48–50. (In Russ.)
  61. Nikitina IL, Gaisina GG. Neuropharmacological characteristics of antidepressant action of a new 3-substituted thietane-1,1-dioxide derivative. Res Results Pharmacol. 2021;7(3):63–71. doi: 10.3897/rrpharmacology.7.68560.
  62. Nikitina IL, Gaisina GG. Involvement of monoaminergic system in the antidepressant effect of 3-substituted thietane-1,1-dioxide derivative. Research Results in Pharmacology. 2022;8(2):87–94. doi: 10.3897/rrpharmacology.8.81007.
  63. Nikitina IL, Gaisina GG, Samorodov AV. The mechanism of antidepressant action of a new 3-substituted thiethane-1,1-dioxide derivative in tests of neuropharmacological interaction. Research Results in Pharmacology. 2022;8(4):175–183. doi: 10.3897/rrpharmacology.8.86560.
  64. Gaisina GG, Mavljutov AA. Evaluation of the antidepressant activity of a new 3-substituted thietane-1,1-dioxide derivative using the resident-intruder model. 80-ya mezhdunarodnaya nauchno-prakticheskaya konferentsiya molodykh uchenykh i studentov “Aktual'nye problemy eksperimental'noy i klinicheskoy meditsiny”. Sbornik statey. Volgograd, 27–29 aprelya 2022 g. Volgograd: VolgGMU; 2023. 366 р. (In Russ.)
  65. Gaisina GG, Nikitina EA, Mavljutov AA. Correction of reserpine depression in rats with 3-substituted thietane-1,1-dioxide. 81-ya mezhdunarodnaya nauchno-prakticheskaya konferentsiya molodykh uchenykh i studentov “Aktual'nye problemy eksperimental'noy i klinicheskoy meditsiny”. Sbornik statey. Volgograd, 19–21 aprelya 2023 g. Volgograd: VolgGMU; 2023. 427 р. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2023 Eco-Vector





Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».