Possibilities of using secondary plant metabolites as antitumor agents

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review summarized the literature data of recent years on the antitumor effect of secondary plant metabolites, as well as their immunotropic and anti-inflammatory effects as components of the antitumor response. The biological basis for the action of secondary plant metabolites was characterized in the form of influence on potential targets: transcription factors, signaling pathways and receptors responsible for proliferation and apoptosis. The ways of increasing the bioavailability of secondary plant metabolites to enhance the effectiveness and possibility of their medicinal use were considered, the effects of berberine, curcumin and their derivatives were described. The search for scientific publications was conducted in foreign (PubMed) and domestic (eLibrary) electronic libraries. It was found that the multiplicity of molecular targets of secondary plant metabolites and the pleiotropy of their effects suggest the possibility of their use for the regulation of various processes in tumor and normal cells. There was a connection between the antitumor effect of secondary plant metabolites and their anti-inflammatory and immunomodulatory action. However, a significant limitation of their use was the fact that most studies were conducted on cell cultures, which was insufficient to judge the antitumor effect. Clinical trials were few and their results were contradictory. In addition, a certain contradiction has been noted between the idea of a more effective action when using a pure substance or a complex composition of various plant components. An important problem was the low bioavailability of most secondary plant metabolites, for which various methods have been proposed. Despite the long history of phytotherapy in oncology, the development of new derivatives of secondary plant metabolites with high water solubility remains relevant, including modified molecules of known secondary plant metabolites and the search for new ones with unexplored biological activity. Modern methods of chemical synthesis and delivery systems of derivatives of secondary plant metabolites, as well as the study of their effects in model experiments, seem to be promising scientific directions for the creation of new drugs with antitumor activity.

About the authors

Elena Yu. Zlatnik

National Medical Research Center of Oncology

Author for correspondence.
Email: elena-zlatnik@mail.ru
ORCID iD: 0000-0002-1410-122X
SPIN-code: 4137-7410

MD, Dr. Sci. (Med.), Prof., Chief Researcher, Laboratory of immunophenotyping of tumors

Russian Federation, Rostov-on-Don

Alexander B. Sagakyants

National Medical Research Center of Oncology

Email: asagak@rambler.ru
ORCID iD: 0000-0003-0874-5261
SPIN-code: 7272-1408

Cand. Sci. (Biol.), Assoc. Prof., Head, Laboratory of Tumor Immunophenotyping

Russian Federation, Rostov-on-Don

Eugenia M. Nepomnyashchaya

National Medical Research Center of Oncology

Email: evgeniyamarkovna@mail.ru
ORCID iD: 0000-0003-0521-8837
SPIN-code: 8930-9580

MD, Dr. Sci. (Med.), Prof., Pathological Anatomy Depart.

Russian Federation, Rostov-on-Don

Natalya A. Zakharova

National Medical Research Center of Oncology

Email: zakharova.tata@yandex.ru
ORCID iD: 0000-0001-7089-5020
SPIN-code: 2182-9981

MD, Cand. Sci. (Med.), Oncologist, Depart. of Reconstructive Plastic Surgery

Russian Federation, Rostov-on-Don

Yulia V. Ulyanova

National Medical Research Center of Oncology

Email: 2014_ulia@mail.ru
ORCID iD: 0000-0002-0361-330X
SPIN-code: 1276-9063

MD, Cand. Sci. (Med.), Oncologist, Depart. of Head and Neck Tumors

Russian Federation, Rostov-on-Don

References

  1. Nasim N, Sandeep IS, Mohanty S. Plant-derived natural products for drug discovery: Current approaches and prospects. Nucleus (Calcutta). 2022;65(3):399–411. doi: 10.1007/s13237-022-00405-3
  2. Sevastre AS, Manea EV, Popescu OS, Tache DE, Danoiu S, Sfredel V, Tataranu LG, Dricu A. Intracellular pathways and mechanisms of colored secondary metabolites in cancer therapy. Int J Mol Sci. 2022;23(17):9943. doi: 10.3390/ijms23179943
  3. Raskin I, Ribnicky DM, Komarnytsky S, Ilic N, Poulev A, Borisjuk N, Brinker A, Moreno DA, Ripoll C, Yakoby N, O'Neal JM, Cornwell T, Pastor I, Fridlender B. Plants and human health in the twenty-first century. Trends Biotechnol. 2002:20(12):522–531. doi: 10.1016/s0167-7799(02)02080-2
  4. Twaij BM, Hasan MdN. Bioactive secondary metabolites from plant sources: Types, synthesis, and their therapeutic uses. International Journal of Plant Biology. 2022;13(1):4–14. doi: 10.3390/ijpb13010003
  5. Guerriero G, Berni R, Muñoz-Sanchez JA, Apone F, Abdel-Salam EM, Qahtan AA, Alatar AA, Cantini C, Cai G, Hausman JF, Siddiqui KS, Hernández-Sotomayor SMT, Faisal M. Production of plant secondary metabolites: Examples, tips and suggestions for biotechnologists. Genes (Basel). 2018;9(6):309. doi: 10.3390/genes9060309
  6. Isah T. Stress and defense responses in plant secondary metabolites production. Biol Res. 2019;52(1):39. doi: 10.1186/s40659-019-0246-3
  7. Lal N, Sahu N, Shirale AO, Gurav P, Rani K, Meena BP, Diwan G, Biswas AK. Plant secondary metabolites and their impact on human health. In: Rajput VD, El-Ramady H, Upadhyay SK, Minkina T, Ahmed B, Mandzhieva S, editors. Nano-biofortification for human and environmental health. Sustainable plant nutrition in a changing world. Springer; 2023. p. 295–321. doi: 10.1007/978-3-031-35147-1_15
  8. Mushtaq S, Abbasi BH, Uzairm B, Abbasi R. Natural products as reservoirs of novel therapeutic agents. EXCLI J. 2018;17:420–451. doi: 10.17179/excli2018-1174
  9. Zhukovskaya EV, Petrushkina NP. Phytotherapy in oncology. Pediatric Bulletin of the South Ural. 2019;(1):57–65. (In Russ.) doi: 10.34710/Chel.2019.56.48.010
  10. Kamalova YaN, Karamova NS, Zelenikhin PV, Abdul-Hafeez EY, Ilinskaya ON. Plant Materials as a Potential Source of Antitumor Agents. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki. 2019;161(3):385–394. (In Russ.) doi: 10.26907/2542-064X.2019.3.385-394
  11. Hussein RA, El-Anssary AA. Plants secondary metabolites. The key drivers of the pharmacological actions of medicinal plants. In: Builders PF, editor. Herbal Medicine. London: IntechOpen; 2018. p. 13–30. doi: 10.5772/intechopen.76139
  12. Ramakrishna W, Kumari A, Rahman N, Mandave P. Anticancer activities of plant secondary metabolites: Rice callus suspension culture as a new paradigm. Rice Science. 2021;28(1):13–30. doi: 10.1016/j.rsci.2020.11.004
  13. Li Y, Kong D, Fu Y, Sussman MR, Wu H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem. 2020;148:80–89. doi: 10.1016/j.plaphy.2020.01.006
  14. Asare MO, Száková J, Tlustoš P. The fate of secondary metabolites in plants growing on Cd-, As-, and Pb-contaminated soils — a comprehensive review. Environmental Science and Pollution Research. 2022;30(5):11378–11398. doi: 10.1007/s11356-022-24776-x
  15. Abotaleb M, Samuel SM, Varghese E, Varghese S, Kubatka P, Liskova A, Büsselberg D. Flavonoids in cancer and apoptosis. Cancers (Basel). 2018;11(1):28. doi: 10.3390/cancers11010028
  16. Rajayan JS, Chandrasekar V, Duraipandian C, Rajendran K. In vitro evaluation of extracts from Ixora Species for a potential phytosomal formulation. Cureus. 2024;16(3):e55396. doi: 10.7759/cureus.55396
  17. Liskova A, Koklesova L, Samec M, Smejkal K, Samuel SM, Varghese E, Abotaleb M, Biringer K, Kudela E, Danko J, Shakibaei M, Kwon TK, Büsselberg D, Kubatka P. Flavonoids in Cancer Metastasis. Cancers (Basel). 2020;12(6):1498. doi: 10.3390/cancers12061498
  18. Ci Y, Zhang Y, Liu Y, Lu S, Cao J, Li H, Zhang J, Huang Z, Zhu X, Gao J, Han M. Myricetin suppresses breast cancer metastasis through down-regulating the activity of matrix metalloproteinase (MMP)-2/9. Phytother Res. 2018;32(7):1373–1381. doi: 10.1002/ptr.6071
  19. Bradley DP, O'Dea AT, Woodson ME, Li Q, Ponzar NL, Knier A, Rogers BL, Murelli RP, Tavis JE. Effects of troponoids on mitochondrial function and cytotoxicity. Antimicrob Agents Chemother. 2022;66(1):e0161721. doi: 10.1128/AAC.01617-21
  20. Kit OI, Zhukova GV, Tolkachev ON, Sidelnikov NI, Fadeev NB, Lukbanova EA, Shikhlyarova AI. Antitumor factors of natural origin and some approaches to the development of effective regimens of phytotherapy in oncology. Voprosy onkologii. 2022;68(5):527–538. (In Russ.) doi: 10.37469/0507-3758-2022-68-5-527-538
  21. Li Y, Yang J, Niu L, Hu D, Li H, Chen L, Yu Y, Chen Q. Structural insights into the design of indole derivatives as tubulin polymerization inhibitors. FEBS Lett. 2020;594(1):199–204. doi: 10.1002/1873-3468.13566
  22. Hawash M, Kahraman DC, Olgac A, Ergun SG, Hamel E, Cetin-Atalay R, Baytas SN. Design and synthesis of novel substituted indole-acrylamide derivatives and evaluation of their anti-cancer activity as potential tubulin-targeting agents. J Mol Struct. 2022;1254:132345. doi: 10.1016/j.molstruc.2022.132345
  23. Luo ML, Huang W, Zhu HP, Peng C, Zhao Q, Han B. Advances in indole-containing alkaloids as potential anticancer agents by regulating autophagy. Biomed Pharmacother. 2022;149:112827. doi: 10.1016/j.biopha.2022.112827
  24. Shestakova KM, Moskaleva NE, Boldin AA, Rezvanov PM, Shestopalov AV, Rumyantsev SA, Zlatnik EY, Novikova IA, Sagakyants AB, Timofeeva SV, Simonov Y, Baskhanova SN, Tobolkina E, Rudaz S, Appolonova SA. Targeted metabolomic profiling as a tool for diagnostics of patients with non-small-cell lung cancer. Sci Rep. 2023;13(1):11072. doi: 10.1038/s41598-023-38140-7
  25. Li J, Li JX, Jiang H, Li M, Chen L, Wang YY, Wang L, Zhang N, Guo HZ, Ma KL. Phytochemistry and biological activities of corynanthe alkaloids. Phytochemistry. 2023;213:113786. doi: 10.1016/j.phytochem.2023.113786
  26. Pan L, Terrazas C, Acuna UM, Ninh TN, Chai H, Blanco EC, Soejarto DD, Satoskar AR. Bioactive indole alkaloids isolated from Alstonia angustifolia. Phytochem Lett. 2014;10:54–59. doi: 10.1016/j.phytol.2014. 06.010
  27. Corti F, Ronchi M, Riva A. Compositions containing berberine. Patent of the Russian Federation No. 2788599. Bull. No. 3 from 23.01.2023. (In Russ.) EDN: UICPHL
  28. Behnam D. Solubilize with curcumin, and if necessary at least with one other active substance. Patent of the Russian Federation No. 2752078. Bull. No. 21 from 22.07.2021. EDN: XSWOKH
  29. Zhao Z, Zeng J, Guo Q, Pu K, Yang Y, Chen N, Zhang G, Zhao M, Zheng Q, Tang J, Hu Q. Berberine suppresses stemness and tumorigenicity of colorectal cancer stem-like cells by inhibiting m6a methylation. Front Oncol. 2021;11:775418. doi: 10.3389/fonc.2021.775418
  30. Du H, Gu J, Peng Q, Wang X, Liu L, Shu X, He Q, Tan Y. Berberine suppresses EMT in liver and gastric carcinoma cells through combination with TGFβR regulating TGF-β/Smad pathway. Oxid Med Cell Longev. 2021;2021:2337818. doi: 10.1155/2021/2337818
  31. Aleissa MS, Al-Zharani M, Alneghery LM, Aleissa AM. Berberine enhances the sensitivity of radiotherapy in ovarian cancer cell line (SKOV-3). Saudi Pharm J. 2023;31(1):110–118. doi: 10.1016/j.jsps.2022.11.009
  32. Li Q, Zhao H, Chen W, Huang P. Berberine induces apoptosis and arrests the cell cycle in multiple cancer cell lines. Arch Med Sci. 2023;19(5):1530–1537. doi: 10.5114/aoms/132969
  33. Gong C, Hu X, Xu Y, Yang J, Zong L, Wang C, Zhu J, Li Z, Lu D. Berberine inhibits proliferation and migration of colorectal cancer cells by downregulation of GRP78. Anticancer Drugs. 2020;31(2):141–149. doi: 10.1097/CAD.0000000000000835
  34. Liu J, Zhu Z, Liu Y, Wei L, Li B, Mao F, Zhang J, Wang Y, Liu Y. MDM2 inhibition-mediated autophagy contributes to the pro-apoptotic effect of Berberine in p53-null leukemic cells. Life Sci. 2020;242:117228. doi: 10.1016/j.lfs.2019.117228
  35. Tak J, Sabarwal A, Shyanti RK, Singh RP. Berberine enhances posttranslational protein stability of p21/cip1 in breast cancer cells via down-regulation of Akt. Mol Cell Biochem. 2019;458(1–2):49–59. doi: 10.1007/s11010-019-03529-4
  36. Jin F, Xie T, Huang X, Zhao X. Berberine inhibits angiogenesis in glioblastoma xenografts by targeting the VEGFR2/ERK pathway. Pharm. Biol. 2018;56(1):665–671. doi: 10.1080/13880209.2018.1548627
  37. Belanova A, Beseda D, Chmykhalo V, Stepanova A, Belousova M, Khrenkova V, Gavalas N, Zolotukhin P. Berberine effects on NFκB, HIF1A and NFE2L2/AP-1 pathways in HeLa cells. Anticancer Agents Med Chem. 2019;19(4):487–501. doi: 10.2174/1871520619666181211121405
  38. Zlatnik EYu, Enin YaS, Burov ON, Bondarenko ES, Sagakyants AB, Kutilin DS, Dzigunova YuV, Ishonina OG, Shalashnaya EV, Ushakova ND. Molecular and cellular aspects of the impact of secondary metabolites from Common Barberry and Hybrid Goat's Rue on the HeLa cell line. Research and Practical Medicine Journal. 2023;10(4):31–47. (In Russ.) doi: 10.17709/2410-1893-2023-10-4-3
  39. Wang ZC, Wang J, Chen H, Tang J, Bian AW, Liu T, Yu LF, Yi Z, Yang F. Synthesis and anticancer activity of novel 9,13-disubstituted berberine derivatives. Bioorg Med Chem Lett. 2020;30(2):126821. doi: 10.1016/j.bmcl.2019.126821
  40. Rauf A, Abu-Izneid T, Khalil AA, Imran M, Shah ZA, Emran TB, Mitra S, Khan Z, Alhumaydhi FA, Aljohani ASM, Khan I, Rahman MM, Jeandet P, Gondal TA. Berberine as a potential anticancer agent: A comprehensive review. Molecules. 2021;26(23):7368. doi: 10.3390/molecules26237368
  41. Cuan X, Yang X, Zhu W, Zhao Y, Luo R, Huang Y, Wang X, Sheng J. Antitumor effects of erlotinib in combination with berberine in A431 cells. BMC Pharmacol Toxicol. 2023;24(1):29. doi: 10.1186/s40360-023-00661-2
  42. Adiwidjaja J, Boddy AV, McLachlan AJ. Physiologically based pharmacokinetic model predictions of natural product-drug interactions between goldenseal, berberine, imatinib and bosutinib. Eur J Clin Pharmacol. 2022;78(4):597–611. doi: 10.1007/s00228-021-03266-y
  43. Wu X, Li Q, Xin H, Yu A, Zhong M. Effects of Berberine on the blood concentration of Cyclosporin A in renal transplanted recipients: Clinical and pharmacokinetic study. Eur J Clin Pharmacol. 2005;61(8):567–572. doi: 10.1007/s00228-005-0952-3
  44. Feng R, Shou JW, Zhao ZX, He CY, Ma C, Huang M, Fu J, Tan XS, Li XY, Wen BY, Chen X, Yang XY, Ren G, Lin Y, Chen Y, You XF, Wang Y, Jiang JD. Transforming Berberine into its intestine-absorbable form by the gut microbiota. Sci Rep. 2015;5:12155. doi: 10.1038/srep12155
  45. Yang F, Gao R, Luo X, Liu R, Xiong D. Berberine influences multiple diseases by modifying gut microbiota. Front Nutr. 2023;10:1187718. doi: 10.3389/fnut.2023.1187718
  46. Vadukoot AK, Mottemmal S, Vekaria PH. Curcumin as a potential therapeutic agent in certain cancer types. Cureus. 2022;14(3):e22825. doi: 10.7759/cureus.22825
  47. Zoi V, Galani V, Lianos GD, Voulgaris S, Kyritsis AP, Alexiou GA. The role of Curcumin in cancer treatment. Biomedicines. 2021;9(9):1086. doi: 10.3390/biomedicines9091086
  48. Yun CW, Jeon J, Go G, Lee JH, Lee SH. The dual role of autophagy in cancer development and a therapeutic strategy for cancer by targeting autophagy. Int J Mol Sci. 2020;22(1):179. doi: 10.3390/ijms22010179
  49. Kushnir TI, Arnotskaya NE, Kudryavtsev IA, Shevchenko VE. The therapeutic potential of Curcumin for the treatment of glioblastoma multiforme. Advances in Molecular Oncology. 2020;7(1):8–16. (In Russ.) doi: 10.17650/2313-805X-2020-7-1-8-16
  50. Moon DO. Curcumin in cancer and inflammation: An in-depth exploration of molecular interactions, therapeutic potentials, and the role in disease management. Int J Mol Sci. 2024;25(5):2911. doi: 10.3390/ijms25052911
  51. Mahammedi H, Planchat E, Pouget M, Durando X, Curé H, Guy L, Van-Praagh I, Savareux L, Atger M, Bayet-Robert M, Gadea E, Abrial C, Thivat E, Chollet P, Eymard JC. The new combination Docetaxel, Prednisone and Curcumin in patients with castration-resistant prostate cancer: A pilot phase II study. Oncology. 2016;90(2):69–78. doi: 10.1159/000441148
  52. Liu C, Rokavec M, Huang Z, Hermeking H. Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis. Cell Death Differ. 2023;30(7):1771–1785. doi: 10.1038/s41418-023-01178-1
  53. Balakrishna A, Kumar MH. Evaluation of synergetic anticancer activity of Berberine and Curcumin on different models of A549, Hep-G2, MCF-7, Jurkat, and K562 cell lines. Biomed Res Int. 2015;2015:354614. doi: 10.1155/2015/354614
  54. Behl T, Kumar K, Brisc C, Rus M, Nistor-Cseppento DC, Bustea C, Aron RAC, Pantis C, Zengin G, Sehgal A, Kaur R, Kumar A, Arora S, Setia D, Chandel D, Bungau S. Exploring the multifocal role of phytochemicals as immunomodulators. Biomed Pharmacother. 2021;133:110959. doi: 10.1016/j.biopha.2020.110959
  55. Chonov DC, Ignatova MMK, Ananiev JR, Gulubova MV. IL-6 activities in the tumour microenvironment. Part 1. Open Access Maced J Med Sci. 2019;7(14):2391–2398. doi: 10.3889/oamjms.2019.589
  56. Zebeaman M, Tadesse MG, Bachheti RK, Bachheti A, Gebeyhu R, Chaubey KK. Plants and plant-derived molecules as natural immunomodulators. Biomed Res Int. 2023;2023:7711297. doi: 10.1155/2023/7711297
  57. Jantan I, Ahmad W, Bukhari SNA. Plant-derived immunomodulators: An insight on their preclinical evaluation and clinical trials. Front Plant Sci. 2015;6:655. doi: 10.3389/fpls.2015.00655
  58. Gorabi AM, Razi B, Aslani S, Abbasifard M, Imani D, Sathyapalan T, Sahebkar A. Effect of curcumin on proinflammatory cytokines: A meta-analysis of randomized controlled trials. Cytokine. 2021;143:155541. doi: 10.1016/j.cyto.2021.155541
  59. Kumar A, Yadav G. Potential role of medicinal plants for their immunomodulatory activity — a review. Annals of Clinical Pharmacology & Toxicology. 2022;3(1):1021.
  60. Yadav R, Jee B, Awasthi SK. Curcumin suppresses the production of pro-inflammatory cytokine interleukin-18 in lipopolysaccharide stimulated murine macrophage-like cells. Indian J Clin Biochem. 2015;30(1):109–112. doi: 10.1007/s12291-014-0452-2
  61. Peng J, Zheng TT, Li X, Liang Y, Wang LJ, Huang YC, Xiao HT. Plant-derived alkaloids: The promising disease-modifying agents for inflammatory bowel disease. Front Pharmacol. 2019;10:351. doi: 10.3389/fphar.2019.00351
  62. Bose S, Panda AK, Mukherjee S, Sa G. Curcumin and tumor immune-editing: Resurrecting the immune system. Cell Div. 2015;10:6. doi: 10.1186/s13008-015-0012-z
  63. Daniel L. Pouliquen, Koraljka Gall Trošelj and Ruby John Anto Curcuminoids as anticancer drugs: Pleiotropic effects, potential for metabolic reprogramming and prospects for the future. Pharmaceutics. 2023;15(6):1612. doi: 10.3390/pharmaceutics15061612
  64. Ma J, Chan CC, Huang WC, Kuo ML. Berberine inhibits pro-inflammatory cytokine-induced IL-6 and CCL11 production via modulation of STAT6 pathway in human bronchial epithelial cells. Int J Med Sci. 2020;17(10):1464–1473. doi: 10.7150/ijms.45400
  65. Xiong K, Deng J, Yue T, Hu W, Zeng X, Yang T, Xiao T. Berberine promotes M2 macrophage polarisation through the IL-4-STAT6 signalling pathway in ulcerative colitis treatment. Heliyon. 2023;9(3):e14176. doi: 10.1016/j.heliyon.2023.e14176
  66. Thomas A, Kamble S, Deshkar S, Kothapalli L, Chitlange S. Bioavailability of berberine: Challenges and solutions. Istanbul J Pharm. 2021;51(1):141–153. doi: 10.26650/IstanbulJPharm.2020.0056
  67. Cosme P, Rodríguez AB, Espino J, Garrido M. Plant phenolics: Bioavailability as a key determinant of their potential health-promoting applications. Antioxidants (Basel). 2020;9(12):1263. doi: 10.3390/antiox9121263
  68. Aghili ZS, Magnani M, Ghatrehsamani M, Dehkordi AN, Mirzaei SA, Dehkordi MB. Intelligent berberine-loaded erythrocytes attenuated inflammatory cytokine productions in macrophages. Sci Rep. 2024;14(1):9381. doi: 10.1038/s41598-024-60103-9

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2024 Eco-Vector

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».