Possibilities of using secondary plant metabolites as antitumor agents
- Authors: Zlatnik E.Y.1, Sagakyants A.B.1, Nepomnyashchaya E.M.1, Zakharova N.A.1, Ulyanova Y.V.1
-
Affiliations:
- National Medical Research Center of Oncology
- Issue: Vol 105, No 5 (2024)
- Pages: 813-824
- Section: Reviews
- URL: https://journal-vniispk.ru/kazanmedj/article/view/266017
- DOI: https://doi.org/10.17816/KMJ634368
- ID: 266017
Cite item
Abstract
The review summarized the literature data of recent years on the antitumor effect of secondary plant metabolites, as well as their immunotropic and anti-inflammatory effects as components of the antitumor response. The biological basis for the action of secondary plant metabolites was characterized in the form of influence on potential targets: transcription factors, signaling pathways and receptors responsible for proliferation and apoptosis. The ways of increasing the bioavailability of secondary plant metabolites to enhance the effectiveness and possibility of their medicinal use were considered, the effects of berberine, curcumin and their derivatives were described. The search for scientific publications was conducted in foreign (PubMed) and domestic (eLibrary) electronic libraries. It was found that the multiplicity of molecular targets of secondary plant metabolites and the pleiotropy of their effects suggest the possibility of their use for the regulation of various processes in tumor and normal cells. There was a connection between the antitumor effect of secondary plant metabolites and their anti-inflammatory and immunomodulatory action. However, a significant limitation of their use was the fact that most studies were conducted on cell cultures, which was insufficient to judge the antitumor effect. Clinical trials were few and their results were contradictory. In addition, a certain contradiction has been noted between the idea of a more effective action when using a pure substance or a complex composition of various plant components. An important problem was the low bioavailability of most secondary plant metabolites, for which various methods have been proposed. Despite the long history of phytotherapy in oncology, the development of new derivatives of secondary plant metabolites with high water solubility remains relevant, including modified molecules of known secondary plant metabolites and the search for new ones with unexplored biological activity. Modern methods of chemical synthesis and delivery systems of derivatives of secondary plant metabolites, as well as the study of their effects in model experiments, seem to be promising scientific directions for the creation of new drugs with antitumor activity.
Full Text
##article.viewOnOriginalSite##About the authors
Elena Yu. Zlatnik
National Medical Research Center of Oncology
Author for correspondence.
Email: elena-zlatnik@mail.ru
ORCID iD: 0000-0002-1410-122X
SPIN-code: 4137-7410
MD, Dr. Sci. (Med.), Prof., Chief Researcher, Laboratory of immunophenotyping of tumors
Russian Federation, Rostov-on-DonAlexander B. Sagakyants
National Medical Research Center of Oncology
Email: asagak@rambler.ru
ORCID iD: 0000-0003-0874-5261
SPIN-code: 7272-1408
Cand. Sci. (Biol.), Assoc. Prof., Head, Laboratory of Tumor Immunophenotyping
Russian Federation, Rostov-on-DonEugenia M. Nepomnyashchaya
National Medical Research Center of Oncology
Email: evgeniyamarkovna@mail.ru
ORCID iD: 0000-0003-0521-8837
SPIN-code: 8930-9580
MD, Dr. Sci. (Med.), Prof., Pathological Anatomy Depart.
Russian Federation, Rostov-on-DonNatalya A. Zakharova
National Medical Research Center of Oncology
Email: zakharova.tata@yandex.ru
ORCID iD: 0000-0001-7089-5020
SPIN-code: 2182-9981
MD, Cand. Sci. (Med.), Oncologist, Depart. of Reconstructive Plastic Surgery
Russian Federation, Rostov-on-DonYulia V. Ulyanova
National Medical Research Center of Oncology
Email: 2014_ulia@mail.ru
ORCID iD: 0000-0002-0361-330X
SPIN-code: 1276-9063
MD, Cand. Sci. (Med.), Oncologist, Depart. of Head and Neck Tumors
Russian Federation, Rostov-on-DonReferences
- Nasim N, Sandeep IS, Mohanty S. Plant-derived natural products for drug discovery: Current approaches and prospects. Nucleus (Calcutta). 2022;65(3):399–411. doi: 10.1007/s13237-022-00405-3
- Sevastre AS, Manea EV, Popescu OS, Tache DE, Danoiu S, Sfredel V, Tataranu LG, Dricu A. Intracellular pathways and mechanisms of colored secondary metabolites in cancer therapy. Int J Mol Sci. 2022;23(17):9943. doi: 10.3390/ijms23179943
- Raskin I, Ribnicky DM, Komarnytsky S, Ilic N, Poulev A, Borisjuk N, Brinker A, Moreno DA, Ripoll C, Yakoby N, O'Neal JM, Cornwell T, Pastor I, Fridlender B. Plants and human health in the twenty-first century. Trends Biotechnol. 2002:20(12):522–531. doi: 10.1016/s0167-7799(02)02080-2
- Twaij BM, Hasan MdN. Bioactive secondary metabolites from plant sources: Types, synthesis, and their therapeutic uses. International Journal of Plant Biology. 2022;13(1):4–14. doi: 10.3390/ijpb13010003
- Guerriero G, Berni R, Muñoz-Sanchez JA, Apone F, Abdel-Salam EM, Qahtan AA, Alatar AA, Cantini C, Cai G, Hausman JF, Siddiqui KS, Hernández-Sotomayor SMT, Faisal M. Production of plant secondary metabolites: Examples, tips and suggestions for biotechnologists. Genes (Basel). 2018;9(6):309. doi: 10.3390/genes9060309
- Isah T. Stress and defense responses in plant secondary metabolites production. Biol Res. 2019;52(1):39. doi: 10.1186/s40659-019-0246-3
- Lal N, Sahu N, Shirale AO, Gurav P, Rani K, Meena BP, Diwan G, Biswas AK. Plant secondary metabolites and their impact on human health. In: Rajput VD, El-Ramady H, Upadhyay SK, Minkina T, Ahmed B, Mandzhieva S, editors. Nano-biofortification for human and environmental health. Sustainable plant nutrition in a changing world. Springer; 2023. p. 295–321. doi: 10.1007/978-3-031-35147-1_15
- Mushtaq S, Abbasi BH, Uzairm B, Abbasi R. Natural products as reservoirs of novel therapeutic agents. EXCLI J. 2018;17:420–451. doi: 10.17179/excli2018-1174
- Zhukovskaya EV, Petrushkina NP. Phytotherapy in oncology. Pediatric Bulletin of the South Ural. 2019;(1):57–65. (In Russ.) doi: 10.34710/Chel.2019.56.48.010
- Kamalova YaN, Karamova NS, Zelenikhin PV, Abdul-Hafeez EY, Ilinskaya ON. Plant Materials as a Potential Source of Antitumor Agents. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki. 2019;161(3):385–394. (In Russ.) doi: 10.26907/2542-064X.2019.3.385-394
- Hussein RA, El-Anssary AA. Plants secondary metabolites. The key drivers of the pharmacological actions of medicinal plants. In: Builders PF, editor. Herbal Medicine. London: IntechOpen; 2018. p. 13–30. doi: 10.5772/intechopen.76139
- Ramakrishna W, Kumari A, Rahman N, Mandave P. Anticancer activities of plant secondary metabolites: Rice callus suspension culture as a new paradigm. Rice Science. 2021;28(1):13–30. doi: 10.1016/j.rsci.2020.11.004
- Li Y, Kong D, Fu Y, Sussman MR, Wu H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem. 2020;148:80–89. doi: 10.1016/j.plaphy.2020.01.006
- Asare MO, Száková J, Tlustoš P. The fate of secondary metabolites in plants growing on Cd-, As-, and Pb-contaminated soils — a comprehensive review. Environmental Science and Pollution Research. 2022;30(5):11378–11398. doi: 10.1007/s11356-022-24776-x
- Abotaleb M, Samuel SM, Varghese E, Varghese S, Kubatka P, Liskova A, Büsselberg D. Flavonoids in cancer and apoptosis. Cancers (Basel). 2018;11(1):28. doi: 10.3390/cancers11010028
- Rajayan JS, Chandrasekar V, Duraipandian C, Rajendran K. In vitro evaluation of extracts from Ixora Species for a potential phytosomal formulation. Cureus. 2024;16(3):e55396. doi: 10.7759/cureus.55396
- Liskova A, Koklesova L, Samec M, Smejkal K, Samuel SM, Varghese E, Abotaleb M, Biringer K, Kudela E, Danko J, Shakibaei M, Kwon TK, Büsselberg D, Kubatka P. Flavonoids in Cancer Metastasis. Cancers (Basel). 2020;12(6):1498. doi: 10.3390/cancers12061498
- Ci Y, Zhang Y, Liu Y, Lu S, Cao J, Li H, Zhang J, Huang Z, Zhu X, Gao J, Han M. Myricetin suppresses breast cancer metastasis through down-regulating the activity of matrix metalloproteinase (MMP)-2/9. Phytother Res. 2018;32(7):1373–1381. doi: 10.1002/ptr.6071
- Bradley DP, O'Dea AT, Woodson ME, Li Q, Ponzar NL, Knier A, Rogers BL, Murelli RP, Tavis JE. Effects of troponoids on mitochondrial function and cytotoxicity. Antimicrob Agents Chemother. 2022;66(1):e0161721. doi: 10.1128/AAC.01617-21
- Kit OI, Zhukova GV, Tolkachev ON, Sidelnikov NI, Fadeev NB, Lukbanova EA, Shikhlyarova AI. Antitumor factors of natural origin and some approaches to the development of effective regimens of phytotherapy in oncology. Voprosy onkologii. 2022;68(5):527–538. (In Russ.) doi: 10.37469/0507-3758-2022-68-5-527-538
- Li Y, Yang J, Niu L, Hu D, Li H, Chen L, Yu Y, Chen Q. Structural insights into the design of indole derivatives as tubulin polymerization inhibitors. FEBS Lett. 2020;594(1):199–204. doi: 10.1002/1873-3468.13566
- Hawash M, Kahraman DC, Olgac A, Ergun SG, Hamel E, Cetin-Atalay R, Baytas SN. Design and synthesis of novel substituted indole-acrylamide derivatives and evaluation of their anti-cancer activity as potential tubulin-targeting agents. J Mol Struct. 2022;1254:132345. doi: 10.1016/j.molstruc.2022.132345
- Luo ML, Huang W, Zhu HP, Peng C, Zhao Q, Han B. Advances in indole-containing alkaloids as potential anticancer agents by regulating autophagy. Biomed Pharmacother. 2022;149:112827. doi: 10.1016/j.biopha.2022.112827
- Shestakova KM, Moskaleva NE, Boldin AA, Rezvanov PM, Shestopalov AV, Rumyantsev SA, Zlatnik EY, Novikova IA, Sagakyants AB, Timofeeva SV, Simonov Y, Baskhanova SN, Tobolkina E, Rudaz S, Appolonova SA. Targeted metabolomic profiling as a tool for diagnostics of patients with non-small-cell lung cancer. Sci Rep. 2023;13(1):11072. doi: 10.1038/s41598-023-38140-7
- Li J, Li JX, Jiang H, Li M, Chen L, Wang YY, Wang L, Zhang N, Guo HZ, Ma KL. Phytochemistry and biological activities of corynanthe alkaloids. Phytochemistry. 2023;213:113786. doi: 10.1016/j.phytochem.2023.113786
- Pan L, Terrazas C, Acuna UM, Ninh TN, Chai H, Blanco EC, Soejarto DD, Satoskar AR. Bioactive indole alkaloids isolated from Alstonia angustifolia. Phytochem Lett. 2014;10:54–59. doi: 10.1016/j.phytol.2014. 06.010
- Corti F, Ronchi M, Riva A. Compositions containing berberine. Patent of the Russian Federation No. 2788599. Bull. No. 3 from 23.01.2023. (In Russ.) EDN: UICPHL
- Behnam D. Solubilize with curcumin, and if necessary at least with one other active substance. Patent of the Russian Federation No. 2752078. Bull. No. 21 from 22.07.2021. EDN: XSWOKH
- Zhao Z, Zeng J, Guo Q, Pu K, Yang Y, Chen N, Zhang G, Zhao M, Zheng Q, Tang J, Hu Q. Berberine suppresses stemness and tumorigenicity of colorectal cancer stem-like cells by inhibiting m6a methylation. Front Oncol. 2021;11:775418. doi: 10.3389/fonc.2021.775418
- Du H, Gu J, Peng Q, Wang X, Liu L, Shu X, He Q, Tan Y. Berberine suppresses EMT in liver and gastric carcinoma cells through combination with TGFβR regulating TGF-β/Smad pathway. Oxid Med Cell Longev. 2021;2021:2337818. doi: 10.1155/2021/2337818
- Aleissa MS, Al-Zharani M, Alneghery LM, Aleissa AM. Berberine enhances the sensitivity of radiotherapy in ovarian cancer cell line (SKOV-3). Saudi Pharm J. 2023;31(1):110–118. doi: 10.1016/j.jsps.2022.11.009
- Li Q, Zhao H, Chen W, Huang P. Berberine induces apoptosis and arrests the cell cycle in multiple cancer cell lines. Arch Med Sci. 2023;19(5):1530–1537. doi: 10.5114/aoms/132969
- Gong C, Hu X, Xu Y, Yang J, Zong L, Wang C, Zhu J, Li Z, Lu D. Berberine inhibits proliferation and migration of colorectal cancer cells by downregulation of GRP78. Anticancer Drugs. 2020;31(2):141–149. doi: 10.1097/CAD.0000000000000835
- Liu J, Zhu Z, Liu Y, Wei L, Li B, Mao F, Zhang J, Wang Y, Liu Y. MDM2 inhibition-mediated autophagy contributes to the pro-apoptotic effect of Berberine in p53-null leukemic cells. Life Sci. 2020;242:117228. doi: 10.1016/j.lfs.2019.117228
- Tak J, Sabarwal A, Shyanti RK, Singh RP. Berberine enhances posttranslational protein stability of p21/cip1 in breast cancer cells via down-regulation of Akt. Mol Cell Biochem. 2019;458(1–2):49–59. doi: 10.1007/s11010-019-03529-4
- Jin F, Xie T, Huang X, Zhao X. Berberine inhibits angiogenesis in glioblastoma xenografts by targeting the VEGFR2/ERK pathway. Pharm. Biol. 2018;56(1):665–671. doi: 10.1080/13880209.2018.1548627
- Belanova A, Beseda D, Chmykhalo V, Stepanova A, Belousova M, Khrenkova V, Gavalas N, Zolotukhin P. Berberine effects on NFκB, HIF1A and NFE2L2/AP-1 pathways in HeLa cells. Anticancer Agents Med Chem. 2019;19(4):487–501. doi: 10.2174/1871520619666181211121405
- Zlatnik EYu, Enin YaS, Burov ON, Bondarenko ES, Sagakyants AB, Kutilin DS, Dzigunova YuV, Ishonina OG, Shalashnaya EV, Ushakova ND. Molecular and cellular aspects of the impact of secondary metabolites from Common Barberry and Hybrid Goat's Rue on the HeLa cell line. Research and Practical Medicine Journal. 2023;10(4):31–47. (In Russ.) doi: 10.17709/2410-1893-2023-10-4-3
- Wang ZC, Wang J, Chen H, Tang J, Bian AW, Liu T, Yu LF, Yi Z, Yang F. Synthesis and anticancer activity of novel 9,13-disubstituted berberine derivatives. Bioorg Med Chem Lett. 2020;30(2):126821. doi: 10.1016/j.bmcl.2019.126821
- Rauf A, Abu-Izneid T, Khalil AA, Imran M, Shah ZA, Emran TB, Mitra S, Khan Z, Alhumaydhi FA, Aljohani ASM, Khan I, Rahman MM, Jeandet P, Gondal TA. Berberine as a potential anticancer agent: A comprehensive review. Molecules. 2021;26(23):7368. doi: 10.3390/molecules26237368
- Cuan X, Yang X, Zhu W, Zhao Y, Luo R, Huang Y, Wang X, Sheng J. Antitumor effects of erlotinib in combination with berberine in A431 cells. BMC Pharmacol Toxicol. 2023;24(1):29. doi: 10.1186/s40360-023-00661-2
- Adiwidjaja J, Boddy AV, McLachlan AJ. Physiologically based pharmacokinetic model predictions of natural product-drug interactions between goldenseal, berberine, imatinib and bosutinib. Eur J Clin Pharmacol. 2022;78(4):597–611. doi: 10.1007/s00228-021-03266-y
- Wu X, Li Q, Xin H, Yu A, Zhong M. Effects of Berberine on the blood concentration of Cyclosporin A in renal transplanted recipients: Clinical and pharmacokinetic study. Eur J Clin Pharmacol. 2005;61(8):567–572. doi: 10.1007/s00228-005-0952-3
- Feng R, Shou JW, Zhao ZX, He CY, Ma C, Huang M, Fu J, Tan XS, Li XY, Wen BY, Chen X, Yang XY, Ren G, Lin Y, Chen Y, You XF, Wang Y, Jiang JD. Transforming Berberine into its intestine-absorbable form by the gut microbiota. Sci Rep. 2015;5:12155. doi: 10.1038/srep12155
- Yang F, Gao R, Luo X, Liu R, Xiong D. Berberine influences multiple diseases by modifying gut microbiota. Front Nutr. 2023;10:1187718. doi: 10.3389/fnut.2023.1187718
- Vadukoot AK, Mottemmal S, Vekaria PH. Curcumin as a potential therapeutic agent in certain cancer types. Cureus. 2022;14(3):e22825. doi: 10.7759/cureus.22825
- Zoi V, Galani V, Lianos GD, Voulgaris S, Kyritsis AP, Alexiou GA. The role of Curcumin in cancer treatment. Biomedicines. 2021;9(9):1086. doi: 10.3390/biomedicines9091086
- Yun CW, Jeon J, Go G, Lee JH, Lee SH. The dual role of autophagy in cancer development and a therapeutic strategy for cancer by targeting autophagy. Int J Mol Sci. 2020;22(1):179. doi: 10.3390/ijms22010179
- Kushnir TI, Arnotskaya NE, Kudryavtsev IA, Shevchenko VE. The therapeutic potential of Curcumin for the treatment of glioblastoma multiforme. Advances in Molecular Oncology. 2020;7(1):8–16. (In Russ.) doi: 10.17650/2313-805X-2020-7-1-8-16
- Moon DO. Curcumin in cancer and inflammation: An in-depth exploration of molecular interactions, therapeutic potentials, and the role in disease management. Int J Mol Sci. 2024;25(5):2911. doi: 10.3390/ijms25052911
- Mahammedi H, Planchat E, Pouget M, Durando X, Curé H, Guy L, Van-Praagh I, Savareux L, Atger M, Bayet-Robert M, Gadea E, Abrial C, Thivat E, Chollet P, Eymard JC. The new combination Docetaxel, Prednisone and Curcumin in patients with castration-resistant prostate cancer: A pilot phase II study. Oncology. 2016;90(2):69–78. doi: 10.1159/000441148
- Liu C, Rokavec M, Huang Z, Hermeking H. Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis. Cell Death Differ. 2023;30(7):1771–1785. doi: 10.1038/s41418-023-01178-1
- Balakrishna A, Kumar MH. Evaluation of synergetic anticancer activity of Berberine and Curcumin on different models of A549, Hep-G2, MCF-7, Jurkat, and K562 cell lines. Biomed Res Int. 2015;2015:354614. doi: 10.1155/2015/354614
- Behl T, Kumar K, Brisc C, Rus M, Nistor-Cseppento DC, Bustea C, Aron RAC, Pantis C, Zengin G, Sehgal A, Kaur R, Kumar A, Arora S, Setia D, Chandel D, Bungau S. Exploring the multifocal role of phytochemicals as immunomodulators. Biomed Pharmacother. 2021;133:110959. doi: 10.1016/j.biopha.2020.110959
- Chonov DC, Ignatova MMK, Ananiev JR, Gulubova MV. IL-6 activities in the tumour microenvironment. Part 1. Open Access Maced J Med Sci. 2019;7(14):2391–2398. doi: 10.3889/oamjms.2019.589
- Zebeaman M, Tadesse MG, Bachheti RK, Bachheti A, Gebeyhu R, Chaubey KK. Plants and plant-derived molecules as natural immunomodulators. Biomed Res Int. 2023;2023:7711297. doi: 10.1155/2023/7711297
- Jantan I, Ahmad W, Bukhari SNA. Plant-derived immunomodulators: An insight on their preclinical evaluation and clinical trials. Front Plant Sci. 2015;6:655. doi: 10.3389/fpls.2015.00655
- Gorabi AM, Razi B, Aslani S, Abbasifard M, Imani D, Sathyapalan T, Sahebkar A. Effect of curcumin on proinflammatory cytokines: A meta-analysis of randomized controlled trials. Cytokine. 2021;143:155541. doi: 10.1016/j.cyto.2021.155541
- Kumar A, Yadav G. Potential role of medicinal plants for their immunomodulatory activity — a review. Annals of Clinical Pharmacology & Toxicology. 2022;3(1):1021.
- Yadav R, Jee B, Awasthi SK. Curcumin suppresses the production of pro-inflammatory cytokine interleukin-18 in lipopolysaccharide stimulated murine macrophage-like cells. Indian J Clin Biochem. 2015;30(1):109–112. doi: 10.1007/s12291-014-0452-2
- Peng J, Zheng TT, Li X, Liang Y, Wang LJ, Huang YC, Xiao HT. Plant-derived alkaloids: The promising disease-modifying agents for inflammatory bowel disease. Front Pharmacol. 2019;10:351. doi: 10.3389/fphar.2019.00351
- Bose S, Panda AK, Mukherjee S, Sa G. Curcumin and tumor immune-editing: Resurrecting the immune system. Cell Div. 2015;10:6. doi: 10.1186/s13008-015-0012-z
- Daniel L. Pouliquen, Koraljka Gall Trošelj and Ruby John Anto Curcuminoids as anticancer drugs: Pleiotropic effects, potential for metabolic reprogramming and prospects for the future. Pharmaceutics. 2023;15(6):1612. doi: 10.3390/pharmaceutics15061612
- Ma J, Chan CC, Huang WC, Kuo ML. Berberine inhibits pro-inflammatory cytokine-induced IL-6 and CCL11 production via modulation of STAT6 pathway in human bronchial epithelial cells. Int J Med Sci. 2020;17(10):1464–1473. doi: 10.7150/ijms.45400
- Xiong K, Deng J, Yue T, Hu W, Zeng X, Yang T, Xiao T. Berberine promotes M2 macrophage polarisation through the IL-4-STAT6 signalling pathway in ulcerative colitis treatment. Heliyon. 2023;9(3):e14176. doi: 10.1016/j.heliyon.2023.e14176
- Thomas A, Kamble S, Deshkar S, Kothapalli L, Chitlange S. Bioavailability of berberine: Challenges and solutions. Istanbul J Pharm. 2021;51(1):141–153. doi: 10.26650/IstanbulJPharm.2020.0056
- Cosme P, Rodríguez AB, Espino J, Garrido M. Plant phenolics: Bioavailability as a key determinant of their potential health-promoting applications. Antioxidants (Basel). 2020;9(12):1263. doi: 10.3390/antiox9121263
- Aghili ZS, Magnani M, Ghatrehsamani M, Dehkordi AN, Mirzaei SA, Dehkordi MB. Intelligent berberine-loaded erythrocytes attenuated inflammatory cytokine productions in macrophages. Sci Rep. 2024;14(1):9381. doi: 10.1038/s41598-024-60103-9
Supplementary files
