The role of the NLRP3 inflammasome in the pathogenesis of bronchial asthma: inflammatory mechanisms and emerging therapeutic perspectives

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This article explores the pathophysiological mechanisms and therapeutic potential for treating bronchial asthma, a significant global public health issue. Immune-mediated inflammation is central to asthma pathogenesis and involves the formation of inflammasomes—molecular complexes that regulate inflammatory responses. The NLRP3 inflammasome plays a pivotal role in disease progression by interacting with allergens and triggering signaling cascades that lead to the production of proinflammatory cytokines, such as interleukin-1β (IL-1β) and IL-18. These cytokines recruit immune cells, including mast cells, eosinophils, and T lymphocytes, which contribute to airway inflammation, hyperresponsiveness, and bronchial obstruction. The article discusses asthma phenotypes, including infection-induced and atopic asthma, and the link between NLRP3 inflammasome activation and impaired lung function, steroid resistance, and neutrophilic inflammation. Special attention is given to the cellular and molecular pathways involved in the inflammatory response, including interactions between the inflammasome and T helper cells, macrophages, eosinophils, and mast cells. These interactions lead to the release of histamine, heparin, lysosomal enzymes, reactive oxygen species, nitric oxide, prostaglandins, and leukotrienes. Inflammatory mediators such as IL-4, IL-5, and IL-13 contribute to airway remodeling, mucus hypersecretion, and bronchospasm. Additionally, inflammasome activation can impair epithelial barrier integrity, further exacerbating allergic inflammation. The article emphasizes the chronic changes in the bronchial tree caused by sustained inflammation and highlights the importance of regulating inflammasome activity. In particular, the selective NLRP3 inflammasome inhibitor MCC950 has demonstrated efficacy in reducing inflammation and shows promise as a novel therapeutic approach. The article concludes that integrating inflammasome research into clinical practice (particularly through the use of targeted therapies such as MCC950) may transform the approach to asthma treatment. This underscores the importance of transitioning toward personalized medicine in the management of chronic inflammatory diseases such as bronchial asthma.

About the authors

Irina Kh. Borukaeva

Kabardino-Balkarian State University named after Kh.M. Berbekov

Email: irborukaeva@yandex.ru
ORCID iD: 0000-0003-1180-228X
SPIN-code: 9102-2336
Scopus Author ID: 23471777400

MD, Dr. Sci. (Med.), Assoc. Prof., Head of Depart., Depart. of Normal and Pathological Human Physiology

Russian Federation, 5 Gorky St, Nalchik,360051

Kemran G. Edilov

Kabardino-Balkarian State University named after Kh.M. Berbekov

Email: Edilov.kemran@mail.ru
ORCID iD: 0009-0000-7009-1452

student

Russian Federation, 5 Gorky St, Nalchik,360051

Alina S. Dzueva

Kabardino-Balkarian State University named after Kh.M. Berbekov

Email: dzueva01@mail.ru
ORCID iD: 0009-0004-6028-7813

student

Russian Federation, 5 Gorky St, Nalchik,360051

Madina I. Labazanova

Kabardino-Balkarian State University named after Kh.M. Berbekov

Email: labazanova281001@mail.ru
ORCID iD: 0009-0004-3793-5819

student

Russian Federation, 5 Gorky St, Nalchik,360051

Khozh-Akhmed R. Gidizov

Kabardino-Balkarian State University named after Kh.M. Berbekov

Author for correspondence.
Email: ahmedgidizov@mail.ru
ORCID iD: 0009-0001-8031-0206

student

Russian Federation, 5 Gorky St, Nalchik,360051

References

  1. Asher MI, Rutter CE, Bissell K, et al. Worldwide trends in the burden of asthma symptoms in school-aged children: Global Asthma Network Phase I cross-sectional study. Lancet. 2021;398(10311):1569–1580. doi: 10.1016/S0140-6736(21)01450-1
  2. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2024. Updated May 7, 2024. Available from: https://www.guidelinecentral.com
  3. Papi A, Brightling C, Pedersen SE, Reddel HK. Asthma. Lancet. 2018;391(10122):783–800. doi: 10.1016/s0140-6736(17)33311-1
  4. Dharmage SC, Perret JL, Custovic A. Epidemiology of asthma in children and adults. Front Pediatr. 2019;18(7):246. doi: 10.3389/fped.2019.00246
  5. Rouadi PW, Idriss SA, Naclerio RM, et al. Immunopathological features of air pollution and its impact on inflammatory airway diseases (IAD). World Allergy Organization J. 2020;13(10):100467. doi: 10.1016/j.waojou.2020.100467
  6. Sharma D, Kanneganti TD. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J Cell Biol. 2016;213:617–29. doi: 10.1083/jcb.201602089
  7. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int J Mol Sci. 2019;20(13):3328. doi: 10.3390/ijms20133328
  8. Fu J, Wu H. Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation. Annu Rev Immunol. 2023;41:301–316. doi: 10.1146/annurev-immunol-081022-021207
  9. Paik S, Kim JK, Silwal P, et al. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol. 2021;18(5):1141–1160. doi: 10.1038/s41423-021-00670-3
  10. Ma M, Jiang W, Zhou R. DAMPs and DAMP-sensing receptors in inflammation and diseases. Immunity. 2024;57(4):752–771. doi: 10.1016/j.immuni.2024.03.002
  11. Chen R, Kang R, Tang D. The mechanism of HMGB1 secretion and release. Exp Mol Med. 2022;54(2):91–102. doi: 10.1038/s12276-022-00736-w
  12. Yang H, Wang H, Andersson U. Targeting Inflammation Driven by HMGB1. Front Immunol. 2020;11:484. doi: 10.3389/fimmu.2020.00484
  13. Garanina EE, Martynova EV, Ivanov KY, et al. Inflammasomes: Role in Disease Pathogenesis and Therapeutic Potential. Proceedings of Kazan University. Natural Sciences Series. 2020;162(1):80–111. doi: 10.26907/2542-064X.2020.1.80-111
  14. Erlich Z, Shlomovitz I, Edry-Botzer L, et al. Macrophages, rather than DCs, are responsible for inflammasome activity in the GM-CSF BMDC model. Nat. Immunol. 2019;20(4):397–406. doi: 10.1038/s41590-019-0313-5
  15. Evavold CL, Kagan JC. How inflammasomes inform adaptive Immunity. J Mol Biol. 2018;430(2):217–237. doi: 10.1016/j.jmb.2017.09.019
  16. Ramachandran R, Manan A, Kim J, Choi S. NLRP3 inflammasome: a key player in the pathogenesis of life-style disorders. Exp Mol Med. 2024;56(7):1488–1500. doi: 10.1038/s12276-024-01261-8
  17. Cornut M, Bourdonnay E, Henry T. Transcriptional Regulation of Inflammasomes. Int J Mol Sci. 2020;21(21):8087. doi: 10.3390/ijms21218087
  18. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407–420. doi: 10.1038/nri.2016.58
  19. Сhen Y, li Y, Wong GWK. Environmental Exposure and Genetic Predisposition as Risk Factors for Asthma in China. Allergy Asthma & Immunology Research. 2016;8(2):92. doi: 10.4168/aair.2016.8.2.92
  20. Man SM, Hopkins LJ, Nugent E, et al. Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc Natl Acad Sci U S A. 2014;111(20):7403–7408. doi: 10.1073/pnas.1402911111
  21. Besnard A-G, Guillou N, Tschopp J, et al. NLRP3 inflammasome is required in murine asthma in the absence of aluminum adjuvant. Allergy. 2011;66:1047–57. doi: 10.1111/j.1398-9995.2011.02586.x
  22. Klimov VV, Zagreshenko D, Urazova OI, et al. Inflammasome as an early pathophysiological phenomenon of inflammation in skin diseases and other pathologies. Bulletin of Siberian Medicine. 2023;22(2):111–121. doi: 10.20538/1682-0363-2023-2-111-121
  23. Im H, Ammit AJ. The NLRP3 inflammasome: role in airway inflammation. Lin Exp Allergy. 2014;44(2):160–72. doi: 10.1111/cea.12206
  24. Pinkerton JW, Kim RY, Robertson AAB, et al. Inflammasomes in the lung. Mol Immunol. 2017;86:44–55. doi: 10.1016/j.molimm.2017.01.014
  25. Horvat JC, Ali MK, Kim RY, et al. Crucial role for lung iron level and regulation in the pathogenesis and severity of asthma. Eur Respir J. 2020;55(4):1901340. doi: 10.1183/13993003.01340-2019
  26. Wadhwa R, Dua K, Adcock IM, et al. Cellular mechanisms underlying steroid-resistant asthma. Eur Respir Rev. 2019;28(153):190096. doi: 10.1183/16000617.0096-2019
  27. Horvat JC, Kim RY, Weaver N, et al. Characterization and inhibition of inflammasome responses in severe and non-severe asthma. Respir Res. 2023;24:303. doi: 10.1186/s12931-023-02603-2
  28. Li F, Liu Z. Expression of NLRP3 in serum and induced sputum of children with asthma and their relationship with disease severity. Eur J Med Res. 2024;29(1):526. doi: 10.1186/s40001-024-02114-w
  29. Mamantopoulos M, Ronchi F, McCoy KD, Wullaert A. Inflammasomes make the case for littermate-controlled experimental design in studying host-microbiota interactions. Gut Microbes. 2018;9(4):374–381. doi: 10.1080/19490976.2017.1421888
  30. Liu X, Zhang Z, Ruan J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535(7610):153–158. doi: 10.1038/nature18629
  31. Aghasafari P, George U, Pidaparti R. A review of inflammatory mechanism in airway diseases. Inflamm Res. 2019;68(1):59–74. doi: 10.1007/s00011-018-1191-2
  32. Swanson KV, Deng M, Ting JP-Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19:477–89. doi: 10.1038/s41577-019-0165-0
  33. Howrylak JA, Nakahira K. Inflammasomes: Key Mediators of Lung Immunity. Rev Physiol. 2017;79:471–494. doi: 10.1146/annurev-physiol-021115-105229
  34. Horvath GL, Schrum JE, De Nardo CM. et al. Intracellular sensing of microbes and danger signals by the inflammasomes. Immunol Rev. 2011;243:119–135. doi: 10.1111/j.1600-065X.2011.01050.x
  35. Kim RY, Pinkerton JW, Essilfie AT, et al. Role for NLRP3 Inflammasome-mediated, IL-1beta-Dependent Responses in Severe, Steroid-Resistant Asthma. Am J Respir Crit Care Med. 2017;196:283–97. doi: 10.1164/rccm.201609-1830OC
  36. Ackland J, Watson A, Wilkinson TMA, Staples KJ. Interrupting the conversation: implications for crosstalk between viral and bacterial infections in the asthmatic airway. Front Allergy. 2021;2:738987. doi: 10.3389/falgy.2021.738987
  37. Kotrba J, Müller I, Pausder A, et al. Innate players in Th2 and non-Th2 asthma: emerging roles for the epithelial cell, mast cell, and monocyte/macrophage network. Am J Physiol Cell Physiol. 2024;327(6):C1373–C1383. doi: 10.1152/ajpcell.00488.2024
  38. Albers GJ, Michalaki C, Ogger PP, et al. Airway macrophage glycolysis controls lung homeostasis and responses to aeroallergen. Mucosal Immunol. 2025;18(1):121–134. doi: 10.1016/j.mucimm.2024.10.002
  39. Gauthier M, Kale SL, Ray A. T1-T2 Interplay in the Complex Immune Landscape of Severe Asthma. Immunol Rev. 2025;330(1):e70011. doi: 10.1111/imr.70011
  40. Kim RY, Horvat JC, Pinkerton JW, et al. MicroRNA-21 drives severe, steroid-insensitive experimental asthma by amplifying phosphoinositide 3-kinase-mediated suppression of histone deacetylase 2. J Allergy Clin Immunol. 2017;139:519–32. doi: 10.1016/j.jaci.2016.04.038
  41. Horvat JC, Kim RY, Weaver N, et al. Characterization and inhibition of inflammasome responses in severe and non-severe asthma. Respir Res. 2023;24:303. doi: 10.1186/s12931-023-02603-2
  42. Mitchell PS, Sandstrom A, Vance RE. The NLRP1 inflammasome: new mechanistic insights and unresolved mysteries. Curr Opin Immunol. 2019;60:37–45. doi: 10.1016/j.coi.2019.04.015
  43. Ford ML, Reza MI, Ruwanpathirana A, et al. Integrative Roles of Pro-Inflammatory Cytokines on Airway Smooth Muscle Structure and Function in Asthma. Immunol Rev. 2025;330(1):e70007. doi: 10.1111/imr.70007
  44. Jackson DJ, Wechsler ME, Brusselle G, Buhl R. Targeting the IL-5 pathway in eosinophilic asthma: A comparison of anti-IL-5 versus anti-IL-5 receptor agents. Allergy. 2024;79(11):2943–2952. doi: 10.1111/all.16346
  45. Murase Y, Takeichi T, Koseki J, et al. UVB-induced skin autoinflammation due to NLRP1b mutation and its inhibition by anti-IL-1β antibody. Front Immunol. 2022;13:876390. doi: 10.3389/fimmu.2022.876390
  46. Jang JH, Zhou M, Makita K, et al. Induction of a memory-like CD4(+) T-cell phenotype by airway smooth muscle cells. Eur J Immunol. 2024;54(4):e2249800. doi: 10.1002/eji.202249800
  47. Nobs SP, Pohlmeier L, Li F, et al. GM-CSF instigates a dendritic cell-T-cell inflammatory circuit that drives chronic asthma development. J Allergy Clin Immunol. 2021;147(6):2118–2133.e3. doi: 10.1016/j.jaci.2020.12.638
  48. Drake MG, Lebold KM, Roth-Carter QR, et al. Eosinophil and airway nerve interactions in asthma. J Leukoc Biol. 2018;104(1):61–67. doi: 10.1002/JLB.3MR1117-426R
  49. Tsang MS-M, Hou T, Chan BC-L, Wong CK. Immunological roles of NLR in allergic diseases and its underlying mechanisms. Int J Mol Sci. 2021;22:1507. doi: 10.3390/ijms22041507
  50. Williams EJ, Negewo NA, Baines KJ. Role of the NLRP3 inflammasome in asthma: Relationship with neutrophilic inflammation, obesity, and therapeutic options. J Allergy Clin Immunol. 2021;147(6):2060–2062. doi: 10.1016/j.jaci.2021.04.022
  51. Liu YJ, Wang HY, Wang R, et al. IgE-FcεRI protein-protein interaction as a therapeutic target against allergic asthma: An updated review. Int J Biol Macromol. 2025;284(Pt1):138099. doi: 10.1016/j.ijbiomac.2024.138099
  52. Ullah MA, Rittchen S, Li J, et al. Dual therapy with corticosteroid ablates the beneficial effect of DP2 antagonism in chronic experimental asthma. Nat Commun. 2024;15(1):10253. doi: 10.1038/s41467-024-54670-8
  53. Theofani E, Semitekolou M, Morianos I, et al. Targeting NLRP3 Inflammasome Activation in Severe Asthma. J Clin Med. 2019;8(10):1615. doi: 10.3390/jcm8101615
  54. Fukuishi N, Takahama K, Kurosaki H, et al. The Role of Endogenous Specialized Proresolving Mediators in Mast Cells and Their Involvement in Inflammation and Resolution. Int J Mol Sci. 2025;26(4):1491. doi: 10.3390/ijms26041491
  55. Mencarelli A, Bist P, Choi HW, et al. Anaphylactic degranulation by mast cells requires the mobilization of inflammasome components. Nat Immunol. 2024;25(4):693–702. doi: 10.1038/s41590-024-01788-y
  56. Yadavalli CS, Upparahalli Venkateshaiah S, Kumar S, et al. Allergen-induced NLRP3/caspase1/IL-18 signaling initiate eosinophilic esophagitis and respective inhibitors protect disease pathogenesis. Commun Biol. 2023;6(1):763. doi: 10.1038/s42003-023-05130-4
  57. Rosenstein RK, Bezbradica JS, Yu S, Medzhitov R. Signaling pathways activated by a protease allergen in basophils. Proc Natl Acad Sci USA. 2014;111(46):E4963–71. doi: 10.1073/pnas.1418959111
  58. De Corso E, Hellings PW, Fokkens WJ, et al. Thymic Stromal Lymphopoietin (TSLP): Evidence in Respiratory Epithelial-driven Diseases Including Chronic Rhinosinusitis with Nasal Polyps. Curr Allergy Asthma Rep. 2024;25(1):7. doi: 10.1007/s11882-024-01186-2
  59. Canè L, Poto R, Palestra F, et al. Thymic Stromal Lymphopoietin (TSLP) Is Cleaved by Human Mast Cell Tryptase and Chymase. Int J Mol Sci. 2024;25(7):4049. doi: 10.3390/ijms25074049
  60. Russell RJ, Boulet LP, Brightling CE, et al. The airway epithelium: an orchestrator of inflammation, a key structural barrierand a therapeutic target in severe asthma. Eur Respir J. 2024;63(4):2301397. doi: 10.1183/13993003.01397-2023
  61. Emanuel E, Arifuzzaman M, Artis D. Epithelial-neuronal-immune cell interactions: Implications for immunity, inflammation, and tissue homeostasis at mucosal sites. J Allergy Clin Immunol. 2024;153(5):1169–1180. doi: 10.1016/j.jaci.2024.02.004
  62. Varricchi G, Brightling CE, Grainge C, et al. Airway remodelling in asthma and the epithelium: on the edge of a new era. Eur Respir J. 2024;63(4):2301619. doi: 10.1183/13993003.01619-2023
  63. Zhou M, Sun R, Jang J, Martin JG. T cell and airway smooth muscle interaction: a key driver of asthmatic airway inflammation and remodeling. Am J Physiol Lung Cell Mol Physiol. 2024;327(3):L382–L394. doi: 10.1152/ajplung.00121.2024
  64. Zhang H, Wei R, Yang X, et al. AMFR drives allergic asthma development by promoting alveolar macrophage-derived GM-CSF production. J Exp Med. 2022;219(5):e20211828. doi: 10.1084/jem.20211828
  65. Ding Z, Yu F, Sun Y, et al. ORMDL3 Promotes Angiogenesis in Chronic Asthma Through the ERK1/2/VEGF/MMP-9 Pathway. Front Pediatr. 2022;9:708555. doi: 10.3389/fped.2021.708555
  66. Kraik K, Tota M, Laska J, et al. The Role of Transforming Growth Factor-β (TGF-β) in Asthma and Chronic Obstructive Pulmonary Disease (COPD). Cells. 2024;13(15):1271. doi: 10.3390/cells13151271
  67. Osei ET, Florez-Sampedro L, Timens W, et al. NLRP3 inflammasome activation in obstructive airway diseases. Allergy. 2020;75(7):1546–1558. doi: 10.1111/all.14246
  68. Manoharan RR, Prasad A, Pospíšil P, Kzhyshkowska J. ROS signaling in innate immunity via oxidative protein modifications. Front Immunol. 2024;15:1359600. doi: 10.3389/fimmu.2024.1359600
  69. Nagasaki T, Wenzel SE. Asthma exacerbations and airway redox imbalance under type 2 inflammatory conditions. Respir Investig. 2024;62(6):923–928. doi: 10.1016/j.resinv.2024.08.003
  70. Afriyie-Mensah JS, Domoyeri P, Antwi-Boasiako C, et al. Relationship between fraction of exhaled nitric oxide and peripheral eosinophilia in asthma. Ann Med. 2024;56(1):2382377. doi: 10.1080/07853890.2024.2382377
  71. Tufvesson E, Andersson C, Weidner J, et al. Inducible nitric oxide synthase expression is increased in the alveolar compartment of asthmatic patients. Allergy. 2017;72(4):627–635. doi: 10.1111/all.13052
  72. AbuJabal R, Ramakrishnan RK, Bajbouj K, Hamid Q. Role of IL-5 in asthma and airway remodelling. Clin Exp Allergy. 2024;54(8):538–549. doi: 10.1111/cea.14489
  73. Esnault S, Johansson MW, Mathur SK. Eosinophils, beyond IL-5. Cells. 2021;10(10):2615. doi: 10.3390/cells10102615
  74. Zhu C, Weng Q, Gao S, et al. TGF-β signaling promotes eosinophil activation in inflammatory responses. Cell Death Dis. 2024;15(8):637. doi: 10.1038/s41419-024-07029-2
  75. Jackson DJ, Akuthota P, Roufosse F. Eosinophils and eosinophilic immune dysfunction in health and disease. Eur Respir Rev. 2022;31(163):210150. doi: 10.1183/16000617.0150-2021
  76. Ngo U, Shi Y, Woodruff P, et al. L-13 and IL-17A activate β1 integrin through an NF-kB/Rho kinase/PIP5K1γ pathway to enhance force transmission in airway smooth muscle. Proc Natl Acad Sci USA. 2024;121(34):e2401251121. doi: 10.1073/pnas.2401251121
  77. Romano Ibarra GS, Lei L, Yu W, et al. IL-13 induces loss of CFTR in ionocytes and reduces airway epithelial fluid absorption. J Clin Invest. 2024;134(21):e181995. doi: 10.1172/JCI181995
  78. Nakagome K, Nagata M. The Possible Roles of IL-4/IL-13 in the Development of Eosinophil-Predominant Severe Asthma. Biomolecules. 2024;14(5):546. doi: 10.3390/biom14050546
  79. Wang L, Netto KG, Zhou L, et al. Single-cell transcriptomic analysis reveals the immune landscape of lung in steroid-resistant asthma exacerbation. Proc Natl Acad Sci USA. 2021;118(2):e2005590118. doi: 10.1073/pnas.2005590118
  80. Gu W, Huang C, Chen G, et al. The role of extracellular traps released by neutrophils, eosinophils, and macrophages in asthma. Respir Res. 2024;25(1):290. doi: 10.1186/s12931-024-02923-x
  81. Yang X, Li H, Ma Q, et al. Neutrophilic Asthma Is Associated with Increased Airway Bacterial Burden and Disordered Community Composition. Biomed Res Int. 2018;2018:9230234. doi: 10.1155/2018/9230234
  82. Xie C, Xu W, Rao S, et al. The Role of Th17/Treg Imbalance, FeNO, Eosinophils, IgE and Their Correlation with Lung Function Parameters with Asthma-chronic Obstructive Pulmonary Disease. Iran J Allergy Asthma Immunol. 2024;23(6):625–640. doi: 10.18502/ijaai.v23i6.17373
  83. Sage SE, Leeb T, Jagannathan V, Gerber V. Single-cell profiling of bronchoalveolar cells reveals a Th17 signature in neutrophilic severe equine asthma. Immunology. 2024;171(4):549–565. doi: 10.1111/imm.13745
  84. Ritzmann F, Lunding LP, Bals R, et al. IL-17 Cytokines and Chronic Lung Diseases. Cells. 2022;11(14):2132. doi: 10.3390/cells11142132
  85. Wen Y, Chen Q, Wang H, et al. Contribution of IL-17C-mediated macrophage polarization to Type 17 inflammation in neutrophilic asthma. Cell Commun Signal. 2024;22(1):557. doi: 10.1186/s12964-024-01937-8
  86. Jin Y, Fleishman JS, Ma Y, et al. NLRP3 Inflammasome Targeting Offers a Novel Therapeutic Paradigm for Sepsis-Induced Myocardial Injury. Drug Des Devel Ther. 2025;19:1025–1041. doi: 10.2147/DDDT.S506537
  87. Acioglu C, Elkabes SJ. Innate immune sensors and regulators at the blood brain barrier: focus on toll-like receptors and inflammasomes as mediators of neuro-immune crosstalk and inflammation. Neuroinflammation. 2025;22(1):39. doi: 10.1186/s12974-025-03360-3
  88. Wang H, Ma L, Su W, et al. NLRP3 inflammasome in health and disease (Review). Int J Mol Med. 2025;55(3):48. doi: 10.3892/ijmm.2025.5489
  89. Lou S, Wu M, Cui S. Targeting NLRP3 Inflammasome: Structure, Function, and Inhibitors. Curr Med Chem. 2024;31(15):2021–2051. doi: 10.2174/0109298673289984231127062528
  90. Farhangian M, Azarafrouz F, Valian N, Dargahi L. The role of interferon beta in neurological diseases and its potential therapeutic relevance. Eur J Pharmacol. 2024;981:176882. doi: 10.1016/j.ejphar.2024.176882
  91. Yang BY, Cheng YG, Liu Y, et al. Datura Metel L. Ameliorates Imiquimod-Induced Psoriasis-Like Dermatitis and Inhibits Inflammatory Cytokines Production through TLR7/8-MyD88-NF-kappaB-NLRP3 Inflammasome Pathway. Molecules. 2019;24(11):2157. doi: 10.3390/molecules24112157
  92. Vetter C, Schieb J, Vedder N, et al. The impact of IL-10 and IL-17 on myeloid-derived suppressor cells in vitro and in vivo in a murine model of asthma. Eur J Immunol. 2024;54(7):e2350785. doi: 10.1002/eji.202350785
  93. Akdis CA. Immunological mechanisms and treatment of allergic diseases: NLRP3 inflammasome in focus. Journal of Allergy and Clinical Immunology. 2019;144(2):375–385. doi: 10.1016/j.jaci.2019.06.001
  94. Zhang X, Wang Z, Zheng Y, et al. Inhibitors of the NLRP3 inflammasome pathway as promising therapeutic candidates for inflammatory diseases (Review). Int J Mol Med. 2023;51(4):35. doi: 10.3892/ijmm.2023.5238
  95. Tang J, Liu Y, Wu Y, et al. Saponins as potential novel NLRP3 inflammasome inhibitors for inflammatory disorders. Arch Pharm Res. 2024;47(10–11):757–792. doi: 10.1007/s12272-024-01517-x
  96. Li H, Guan Y, Liang B, et al. Therapeutic potential of MCC950, a specific inhibitor of NLRP3 inflammasome. Eur J Pharmacol. 2022;928:175091. doi: 10.1016/j.ejphar.2022.175091
  97. Netea MG, Joosten LA. Inflammasome inhibition: Putting out the fire. Cell Metab. 2015;21(4):513–514. doi: 10.1016/j.cmet.2015.03.012
  98. Angosto-Bazarra D, Molina-López C, Peñín-Franch A, et al. Techniques to study inflammasome activation and inhibition by small molecules. Molecules. 2021;26(6):1704. doi: 10.3390/ molecules26061704
  99. Coll RC, Hill JR, Day CJ, et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol. 2019;15(6):556–559. doi: 10.1038/s41589-019-0277-7
  100. Wu D, Chen Y, Sun Y, et al. Target of MCC950 in Inhibition of NLRP3 Inflammasome Activation: a Literature Review. Inflammation. 2020;43(1):17–23. doi: 10.1007/s10753-019-01098-8
  101. Ward R, Li W, Abdul Y, et al. NLRP3 inflammasome inhibition with MCC950 improves diabetes-mediated cognitive impairment and vasoneuronal remodeling after ischemia. Pharmacol Res. 2019;142(237):250. doi: 10.1016/j.phrs.2019.01.035
  102. Zhai Y, Meng X, Ye T, et al. Inhibiting the NLRP3 inflammasome activation with MCC950 ameliorates diabetic encephalopathy in db/db mice. Molecules. 2018;23(3):1–14. doi: 10.3390/molecules23030522
  103. Dempsey C, Araiz AR, Bryson KJ, et al. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice. Brain Behav Immun. 2017;61:306–316. doi: 10.1016/j.bbi.2016.12.014
  104. Van der Heijden T, Kritikou E, Venema W, et al. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice-brief report. Arterioscler Thromb Vasc Biol. 2017;37(8):1457–1461. doi: 10.1161/ATVBAHA.117.309575
  105. Qu J, Yuan Z, Wang G, et al. The selective NLRP3 inflammasome inhibitor MCC950 alleviates cholestatic liver injury and fibrosis in mice. Int Immunopharmacol. 2019;70:147–155. doi: 10.1016/j.intimp.2019.02.016
  106. Chen S, Yao L, Huang P, et al. Blockade of the NLRP3/caspase-1 axis ameliorates airway neutrophilic inflammation in a toluene diisocyanate-induced murine asthma model. Toxicol. Sci. 2019;170(2):462–475. doi: 10.1093/toxsci/kfz099

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».