The role of the NLRP3 inflammasome in the pathogenesis of bronchial asthma: inflammatory mechanisms and emerging therapeutic perspectives
- Authors: Borukaeva I.K.1, Edilov K.G.1, Dzueva A.S.1, Labazanova M.I.1, Gidizov K.R.1
-
Affiliations:
- Kabardino-Balkarian State University named after Kh.M. Berbekov
- Issue: Vol 106, No 2 (2025)
- Pages: 287-297
- Section: Reviews
- URL: https://journal-vniispk.ru/kazanmedj/article/view/292227
- DOI: https://doi.org/10.17816/KMJ646818
- ID: 292227
Cite item
Abstract
This article explores the pathophysiological mechanisms and therapeutic potential for treating bronchial asthma, a significant global public health issue. Immune-mediated inflammation is central to asthma pathogenesis and involves the formation of inflammasomes—molecular complexes that regulate inflammatory responses. The NLRP3 inflammasome plays a pivotal role in disease progression by interacting with allergens and triggering signaling cascades that lead to the production of proinflammatory cytokines, such as interleukin-1β (IL-1β) and IL-18. These cytokines recruit immune cells, including mast cells, eosinophils, and T lymphocytes, which contribute to airway inflammation, hyperresponsiveness, and bronchial obstruction. The article discusses asthma phenotypes, including infection-induced and atopic asthma, and the link between NLRP3 inflammasome activation and impaired lung function, steroid resistance, and neutrophilic inflammation. Special attention is given to the cellular and molecular pathways involved in the inflammatory response, including interactions between the inflammasome and T helper cells, macrophages, eosinophils, and mast cells. These interactions lead to the release of histamine, heparin, lysosomal enzymes, reactive oxygen species, nitric oxide, prostaglandins, and leukotrienes. Inflammatory mediators such as IL-4, IL-5, and IL-13 contribute to airway remodeling, mucus hypersecretion, and bronchospasm. Additionally, inflammasome activation can impair epithelial barrier integrity, further exacerbating allergic inflammation. The article emphasizes the chronic changes in the bronchial tree caused by sustained inflammation and highlights the importance of regulating inflammasome activity. In particular, the selective NLRP3 inflammasome inhibitor MCC950 has demonstrated efficacy in reducing inflammation and shows promise as a novel therapeutic approach. The article concludes that integrating inflammasome research into clinical practice (particularly through the use of targeted therapies such as MCC950) may transform the approach to asthma treatment. This underscores the importance of transitioning toward personalized medicine in the management of chronic inflammatory diseases such as bronchial asthma.
Full Text
##article.viewOnOriginalSite##About the authors
Irina Kh. Borukaeva
Kabardino-Balkarian State University named after Kh.M. Berbekov
Email: irborukaeva@yandex.ru
ORCID iD: 0000-0003-1180-228X
SPIN-code: 9102-2336
Scopus Author ID: 23471777400
MD, Dr. Sci. (Med.), Assoc. Prof., Head of Depart., Depart. of Normal and Pathological Human Physiology
Russian Federation, 5 Gorky St, Nalchik,360051Kemran G. Edilov
Kabardino-Balkarian State University named after Kh.M. Berbekov
Email: Edilov.kemran@mail.ru
ORCID iD: 0009-0000-7009-1452
student
Russian Federation, 5 Gorky St, Nalchik,360051Alina S. Dzueva
Kabardino-Balkarian State University named after Kh.M. Berbekov
Email: dzueva01@mail.ru
ORCID iD: 0009-0004-6028-7813
student
Russian Federation, 5 Gorky St, Nalchik,360051Madina I. Labazanova
Kabardino-Balkarian State University named after Kh.M. Berbekov
Email: labazanova281001@mail.ru
ORCID iD: 0009-0004-3793-5819
student
Russian Federation, 5 Gorky St, Nalchik,360051Khozh-Akhmed R. Gidizov
Kabardino-Balkarian State University named after Kh.M. Berbekov
Author for correspondence.
Email: ahmedgidizov@mail.ru
ORCID iD: 0009-0001-8031-0206
student
Russian Federation, 5 Gorky St, Nalchik,360051References
- Asher MI, Rutter CE, Bissell K, et al. Worldwide trends in the burden of asthma symptoms in school-aged children: Global Asthma Network Phase I cross-sectional study. Lancet. 2021;398(10311):1569–1580. doi: 10.1016/S0140-6736(21)01450-1
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2024. Updated May 7, 2024. Available from: https://www.guidelinecentral.com
- Papi A, Brightling C, Pedersen SE, Reddel HK. Asthma. Lancet. 2018;391(10122):783–800. doi: 10.1016/s0140-6736(17)33311-1
- Dharmage SC, Perret JL, Custovic A. Epidemiology of asthma in children and adults. Front Pediatr. 2019;18(7):246. doi: 10.3389/fped.2019.00246
- Rouadi PW, Idriss SA, Naclerio RM, et al. Immunopathological features of air pollution and its impact on inflammatory airway diseases (IAD). World Allergy Organization J. 2020;13(10):100467. doi: 10.1016/j.waojou.2020.100467
- Sharma D, Kanneganti TD. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J Cell Biol. 2016;213:617–29. doi: 10.1083/jcb.201602089
- Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int J Mol Sci. 2019;20(13):3328. doi: 10.3390/ijms20133328
- Fu J, Wu H. Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation. Annu Rev Immunol. 2023;41:301–316. doi: 10.1146/annurev-immunol-081022-021207
- Paik S, Kim JK, Silwal P, et al. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol. 2021;18(5):1141–1160. doi: 10.1038/s41423-021-00670-3
- Ma M, Jiang W, Zhou R. DAMPs and DAMP-sensing receptors in inflammation and diseases. Immunity. 2024;57(4):752–771. doi: 10.1016/j.immuni.2024.03.002
- Chen R, Kang R, Tang D. The mechanism of HMGB1 secretion and release. Exp Mol Med. 2022;54(2):91–102. doi: 10.1038/s12276-022-00736-w
- Yang H, Wang H, Andersson U. Targeting Inflammation Driven by HMGB1. Front Immunol. 2020;11:484. doi: 10.3389/fimmu.2020.00484
- Garanina EE, Martynova EV, Ivanov KY, et al. Inflammasomes: Role in Disease Pathogenesis and Therapeutic Potential. Proceedings of Kazan University. Natural Sciences Series. 2020;162(1):80–111. doi: 10.26907/2542-064X.2020.1.80-111
- Erlich Z, Shlomovitz I, Edry-Botzer L, et al. Macrophages, rather than DCs, are responsible for inflammasome activity in the GM-CSF BMDC model. Nat. Immunol. 2019;20(4):397–406. doi: 10.1038/s41590-019-0313-5
- Evavold CL, Kagan JC. How inflammasomes inform adaptive Immunity. J Mol Biol. 2018;430(2):217–237. doi: 10.1016/j.jmb.2017.09.019
- Ramachandran R, Manan A, Kim J, Choi S. NLRP3 inflammasome: a key player in the pathogenesis of life-style disorders. Exp Mol Med. 2024;56(7):1488–1500. doi: 10.1038/s12276-024-01261-8
- Cornut M, Bourdonnay E, Henry T. Transcriptional Regulation of Inflammasomes. Int J Mol Sci. 2020;21(21):8087. doi: 10.3390/ijms21218087
- Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407–420. doi: 10.1038/nri.2016.58
- Сhen Y, li Y, Wong GWK. Environmental Exposure and Genetic Predisposition as Risk Factors for Asthma in China. Allergy Asthma & Immunology Research. 2016;8(2):92. doi: 10.4168/aair.2016.8.2.92
- Man SM, Hopkins LJ, Nugent E, et al. Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc Natl Acad Sci U S A. 2014;111(20):7403–7408. doi: 10.1073/pnas.1402911111
- Besnard A-G, Guillou N, Tschopp J, et al. NLRP3 inflammasome is required in murine asthma in the absence of aluminum adjuvant. Allergy. 2011;66:1047–57. doi: 10.1111/j.1398-9995.2011.02586.x
- Klimov VV, Zagreshenko D, Urazova OI, et al. Inflammasome as an early pathophysiological phenomenon of inflammation in skin diseases and other pathologies. Bulletin of Siberian Medicine. 2023;22(2):111–121. doi: 10.20538/1682-0363-2023-2-111-121
- Im H, Ammit AJ. The NLRP3 inflammasome: role in airway inflammation. Lin Exp Allergy. 2014;44(2):160–72. doi: 10.1111/cea.12206
- Pinkerton JW, Kim RY, Robertson AAB, et al. Inflammasomes in the lung. Mol Immunol. 2017;86:44–55. doi: 10.1016/j.molimm.2017.01.014
- Horvat JC, Ali MK, Kim RY, et al. Crucial role for lung iron level and regulation in the pathogenesis and severity of asthma. Eur Respir J. 2020;55(4):1901340. doi: 10.1183/13993003.01340-2019
- Wadhwa R, Dua K, Adcock IM, et al. Cellular mechanisms underlying steroid-resistant asthma. Eur Respir Rev. 2019;28(153):190096. doi: 10.1183/16000617.0096-2019
- Horvat JC, Kim RY, Weaver N, et al. Characterization and inhibition of inflammasome responses in severe and non-severe asthma. Respir Res. 2023;24:303. doi: 10.1186/s12931-023-02603-2
- Li F, Liu Z. Expression of NLRP3 in serum and induced sputum of children with asthma and their relationship with disease severity. Eur J Med Res. 2024;29(1):526. doi: 10.1186/s40001-024-02114-w
- Mamantopoulos M, Ronchi F, McCoy KD, Wullaert A. Inflammasomes make the case for littermate-controlled experimental design in studying host-microbiota interactions. Gut Microbes. 2018;9(4):374–381. doi: 10.1080/19490976.2017.1421888
- Liu X, Zhang Z, Ruan J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535(7610):153–158. doi: 10.1038/nature18629
- Aghasafari P, George U, Pidaparti R. A review of inflammatory mechanism in airway diseases. Inflamm Res. 2019;68(1):59–74. doi: 10.1007/s00011-018-1191-2
- Swanson KV, Deng M, Ting JP-Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19:477–89. doi: 10.1038/s41577-019-0165-0
- Howrylak JA, Nakahira K. Inflammasomes: Key Mediators of Lung Immunity. Rev Physiol. 2017;79:471–494. doi: 10.1146/annurev-physiol-021115-105229
- Horvath GL, Schrum JE, De Nardo CM. et al. Intracellular sensing of microbes and danger signals by the inflammasomes. Immunol Rev. 2011;243:119–135. doi: 10.1111/j.1600-065X.2011.01050.x
- Kim RY, Pinkerton JW, Essilfie AT, et al. Role for NLRP3 Inflammasome-mediated, IL-1beta-Dependent Responses in Severe, Steroid-Resistant Asthma. Am J Respir Crit Care Med. 2017;196:283–97. doi: 10.1164/rccm.201609-1830OC
- Ackland J, Watson A, Wilkinson TMA, Staples KJ. Interrupting the conversation: implications for crosstalk between viral and bacterial infections in the asthmatic airway. Front Allergy. 2021;2:738987. doi: 10.3389/falgy.2021.738987
- Kotrba J, Müller I, Pausder A, et al. Innate players in Th2 and non-Th2 asthma: emerging roles for the epithelial cell, mast cell, and monocyte/macrophage network. Am J Physiol Cell Physiol. 2024;327(6):C1373–C1383. doi: 10.1152/ajpcell.00488.2024
- Albers GJ, Michalaki C, Ogger PP, et al. Airway macrophage glycolysis controls lung homeostasis and responses to aeroallergen. Mucosal Immunol. 2025;18(1):121–134. doi: 10.1016/j.mucimm.2024.10.002
- Gauthier M, Kale SL, Ray A. T1-T2 Interplay in the Complex Immune Landscape of Severe Asthma. Immunol Rev. 2025;330(1):e70011. doi: 10.1111/imr.70011
- Kim RY, Horvat JC, Pinkerton JW, et al. MicroRNA-21 drives severe, steroid-insensitive experimental asthma by amplifying phosphoinositide 3-kinase-mediated suppression of histone deacetylase 2. J Allergy Clin Immunol. 2017;139:519–32. doi: 10.1016/j.jaci.2016.04.038
- Horvat JC, Kim RY, Weaver N, et al. Characterization and inhibition of inflammasome responses in severe and non-severe asthma. Respir Res. 2023;24:303. doi: 10.1186/s12931-023-02603-2
- Mitchell PS, Sandstrom A, Vance RE. The NLRP1 inflammasome: new mechanistic insights and unresolved mysteries. Curr Opin Immunol. 2019;60:37–45. doi: 10.1016/j.coi.2019.04.015
- Ford ML, Reza MI, Ruwanpathirana A, et al. Integrative Roles of Pro-Inflammatory Cytokines on Airway Smooth Muscle Structure and Function in Asthma. Immunol Rev. 2025;330(1):e70007. doi: 10.1111/imr.70007
- Jackson DJ, Wechsler ME, Brusselle G, Buhl R. Targeting the IL-5 pathway in eosinophilic asthma: A comparison of anti-IL-5 versus anti-IL-5 receptor agents. Allergy. 2024;79(11):2943–2952. doi: 10.1111/all.16346
- Murase Y, Takeichi T, Koseki J, et al. UVB-induced skin autoinflammation due to NLRP1b mutation and its inhibition by anti-IL-1β antibody. Front Immunol. 2022;13:876390. doi: 10.3389/fimmu.2022.876390
- Jang JH, Zhou M, Makita K, et al. Induction of a memory-like CD4(+) T-cell phenotype by airway smooth muscle cells. Eur J Immunol. 2024;54(4):e2249800. doi: 10.1002/eji.202249800
- Nobs SP, Pohlmeier L, Li F, et al. GM-CSF instigates a dendritic cell-T-cell inflammatory circuit that drives chronic asthma development. J Allergy Clin Immunol. 2021;147(6):2118–2133.e3. doi: 10.1016/j.jaci.2020.12.638
- Drake MG, Lebold KM, Roth-Carter QR, et al. Eosinophil and airway nerve interactions in asthma. J Leukoc Biol. 2018;104(1):61–67. doi: 10.1002/JLB.3MR1117-426R
- Tsang MS-M, Hou T, Chan BC-L, Wong CK. Immunological roles of NLR in allergic diseases and its underlying mechanisms. Int J Mol Sci. 2021;22:1507. doi: 10.3390/ijms22041507
- Williams EJ, Negewo NA, Baines KJ. Role of the NLRP3 inflammasome in asthma: Relationship with neutrophilic inflammation, obesity, and therapeutic options. J Allergy Clin Immunol. 2021;147(6):2060–2062. doi: 10.1016/j.jaci.2021.04.022
- Liu YJ, Wang HY, Wang R, et al. IgE-FcεRI protein-protein interaction as a therapeutic target against allergic asthma: An updated review. Int J Biol Macromol. 2025;284(Pt1):138099. doi: 10.1016/j.ijbiomac.2024.138099
- Ullah MA, Rittchen S, Li J, et al. Dual therapy with corticosteroid ablates the beneficial effect of DP2 antagonism in chronic experimental asthma. Nat Commun. 2024;15(1):10253. doi: 10.1038/s41467-024-54670-8
- Theofani E, Semitekolou M, Morianos I, et al. Targeting NLRP3 Inflammasome Activation in Severe Asthma. J Clin Med. 2019;8(10):1615. doi: 10.3390/jcm8101615
- Fukuishi N, Takahama K, Kurosaki H, et al. The Role of Endogenous Specialized Proresolving Mediators in Mast Cells and Their Involvement in Inflammation and Resolution. Int J Mol Sci. 2025;26(4):1491. doi: 10.3390/ijms26041491
- Mencarelli A, Bist P, Choi HW, et al. Anaphylactic degranulation by mast cells requires the mobilization of inflammasome components. Nat Immunol. 2024;25(4):693–702. doi: 10.1038/s41590-024-01788-y
- Yadavalli CS, Upparahalli Venkateshaiah S, Kumar S, et al. Allergen-induced NLRP3/caspase1/IL-18 signaling initiate eosinophilic esophagitis and respective inhibitors protect disease pathogenesis. Commun Biol. 2023;6(1):763. doi: 10.1038/s42003-023-05130-4
- Rosenstein RK, Bezbradica JS, Yu S, Medzhitov R. Signaling pathways activated by a protease allergen in basophils. Proc Natl Acad Sci USA. 2014;111(46):E4963–71. doi: 10.1073/pnas.1418959111
- De Corso E, Hellings PW, Fokkens WJ, et al. Thymic Stromal Lymphopoietin (TSLP): Evidence in Respiratory Epithelial-driven Diseases Including Chronic Rhinosinusitis with Nasal Polyps. Curr Allergy Asthma Rep. 2024;25(1):7. doi: 10.1007/s11882-024-01186-2
- Canè L, Poto R, Palestra F, et al. Thymic Stromal Lymphopoietin (TSLP) Is Cleaved by Human Mast Cell Tryptase and Chymase. Int J Mol Sci. 2024;25(7):4049. doi: 10.3390/ijms25074049
- Russell RJ, Boulet LP, Brightling CE, et al. The airway epithelium: an orchestrator of inflammation, a key structural barrierand a therapeutic target in severe asthma. Eur Respir J. 2024;63(4):2301397. doi: 10.1183/13993003.01397-2023
- Emanuel E, Arifuzzaman M, Artis D. Epithelial-neuronal-immune cell interactions: Implications for immunity, inflammation, and tissue homeostasis at mucosal sites. J Allergy Clin Immunol. 2024;153(5):1169–1180. doi: 10.1016/j.jaci.2024.02.004
- Varricchi G, Brightling CE, Grainge C, et al. Airway remodelling in asthma and the epithelium: on the edge of a new era. Eur Respir J. 2024;63(4):2301619. doi: 10.1183/13993003.01619-2023
- Zhou M, Sun R, Jang J, Martin JG. T cell and airway smooth muscle interaction: a key driver of asthmatic airway inflammation and remodeling. Am J Physiol Lung Cell Mol Physiol. 2024;327(3):L382–L394. doi: 10.1152/ajplung.00121.2024
- Zhang H, Wei R, Yang X, et al. AMFR drives allergic asthma development by promoting alveolar macrophage-derived GM-CSF production. J Exp Med. 2022;219(5):e20211828. doi: 10.1084/jem.20211828
- Ding Z, Yu F, Sun Y, et al. ORMDL3 Promotes Angiogenesis in Chronic Asthma Through the ERK1/2/VEGF/MMP-9 Pathway. Front Pediatr. 2022;9:708555. doi: 10.3389/fped.2021.708555
- Kraik K, Tota M, Laska J, et al. The Role of Transforming Growth Factor-β (TGF-β) in Asthma and Chronic Obstructive Pulmonary Disease (COPD). Cells. 2024;13(15):1271. doi: 10.3390/cells13151271
- Osei ET, Florez-Sampedro L, Timens W, et al. NLRP3 inflammasome activation in obstructive airway diseases. Allergy. 2020;75(7):1546–1558. doi: 10.1111/all.14246
- Manoharan RR, Prasad A, Pospíšil P, Kzhyshkowska J. ROS signaling in innate immunity via oxidative protein modifications. Front Immunol. 2024;15:1359600. doi: 10.3389/fimmu.2024.1359600
- Nagasaki T, Wenzel SE. Asthma exacerbations and airway redox imbalance under type 2 inflammatory conditions. Respir Investig. 2024;62(6):923–928. doi: 10.1016/j.resinv.2024.08.003
- Afriyie-Mensah JS, Domoyeri P, Antwi-Boasiako C, et al. Relationship between fraction of exhaled nitric oxide and peripheral eosinophilia in asthma. Ann Med. 2024;56(1):2382377. doi: 10.1080/07853890.2024.2382377
- Tufvesson E, Andersson C, Weidner J, et al. Inducible nitric oxide synthase expression is increased in the alveolar compartment of asthmatic patients. Allergy. 2017;72(4):627–635. doi: 10.1111/all.13052
- AbuJabal R, Ramakrishnan RK, Bajbouj K, Hamid Q. Role of IL-5 in asthma and airway remodelling. Clin Exp Allergy. 2024;54(8):538–549. doi: 10.1111/cea.14489
- Esnault S, Johansson MW, Mathur SK. Eosinophils, beyond IL-5. Cells. 2021;10(10):2615. doi: 10.3390/cells10102615
- Zhu C, Weng Q, Gao S, et al. TGF-β signaling promotes eosinophil activation in inflammatory responses. Cell Death Dis. 2024;15(8):637. doi: 10.1038/s41419-024-07029-2
- Jackson DJ, Akuthota P, Roufosse F. Eosinophils and eosinophilic immune dysfunction in health and disease. Eur Respir Rev. 2022;31(163):210150. doi: 10.1183/16000617.0150-2021
- Ngo U, Shi Y, Woodruff P, et al. L-13 and IL-17A activate β1 integrin through an NF-kB/Rho kinase/PIP5K1γ pathway to enhance force transmission in airway smooth muscle. Proc Natl Acad Sci USA. 2024;121(34):e2401251121. doi: 10.1073/pnas.2401251121
- Romano Ibarra GS, Lei L, Yu W, et al. IL-13 induces loss of CFTR in ionocytes and reduces airway epithelial fluid absorption. J Clin Invest. 2024;134(21):e181995. doi: 10.1172/JCI181995
- Nakagome K, Nagata M. The Possible Roles of IL-4/IL-13 in the Development of Eosinophil-Predominant Severe Asthma. Biomolecules. 2024;14(5):546. doi: 10.3390/biom14050546
- Wang L, Netto KG, Zhou L, et al. Single-cell transcriptomic analysis reveals the immune landscape of lung in steroid-resistant asthma exacerbation. Proc Natl Acad Sci USA. 2021;118(2):e2005590118. doi: 10.1073/pnas.2005590118
- Gu W, Huang C, Chen G, et al. The role of extracellular traps released by neutrophils, eosinophils, and macrophages in asthma. Respir Res. 2024;25(1):290. doi: 10.1186/s12931-024-02923-x
- Yang X, Li H, Ma Q, et al. Neutrophilic Asthma Is Associated with Increased Airway Bacterial Burden and Disordered Community Composition. Biomed Res Int. 2018;2018:9230234. doi: 10.1155/2018/9230234
- Xie C, Xu W, Rao S, et al. The Role of Th17/Treg Imbalance, FeNO, Eosinophils, IgE and Their Correlation with Lung Function Parameters with Asthma-chronic Obstructive Pulmonary Disease. Iran J Allergy Asthma Immunol. 2024;23(6):625–640. doi: 10.18502/ijaai.v23i6.17373
- Sage SE, Leeb T, Jagannathan V, Gerber V. Single-cell profiling of bronchoalveolar cells reveals a Th17 signature in neutrophilic severe equine asthma. Immunology. 2024;171(4):549–565. doi: 10.1111/imm.13745
- Ritzmann F, Lunding LP, Bals R, et al. IL-17 Cytokines and Chronic Lung Diseases. Cells. 2022;11(14):2132. doi: 10.3390/cells11142132
- Wen Y, Chen Q, Wang H, et al. Contribution of IL-17C-mediated macrophage polarization to Type 17 inflammation in neutrophilic asthma. Cell Commun Signal. 2024;22(1):557. doi: 10.1186/s12964-024-01937-8
- Jin Y, Fleishman JS, Ma Y, et al. NLRP3 Inflammasome Targeting Offers a Novel Therapeutic Paradigm for Sepsis-Induced Myocardial Injury. Drug Des Devel Ther. 2025;19:1025–1041. doi: 10.2147/DDDT.S506537
- Acioglu C, Elkabes SJ. Innate immune sensors and regulators at the blood brain barrier: focus on toll-like receptors and inflammasomes as mediators of neuro-immune crosstalk and inflammation. Neuroinflammation. 2025;22(1):39. doi: 10.1186/s12974-025-03360-3
- Wang H, Ma L, Su W, et al. NLRP3 inflammasome in health and disease (Review). Int J Mol Med. 2025;55(3):48. doi: 10.3892/ijmm.2025.5489
- Lou S, Wu M, Cui S. Targeting NLRP3 Inflammasome: Structure, Function, and Inhibitors. Curr Med Chem. 2024;31(15):2021–2051. doi: 10.2174/0109298673289984231127062528
- Farhangian M, Azarafrouz F, Valian N, Dargahi L. The role of interferon beta in neurological diseases and its potential therapeutic relevance. Eur J Pharmacol. 2024;981:176882. doi: 10.1016/j.ejphar.2024.176882
- Yang BY, Cheng YG, Liu Y, et al. Datura Metel L. Ameliorates Imiquimod-Induced Psoriasis-Like Dermatitis and Inhibits Inflammatory Cytokines Production through TLR7/8-MyD88-NF-kappaB-NLRP3 Inflammasome Pathway. Molecules. 2019;24(11):2157. doi: 10.3390/molecules24112157
- Vetter C, Schieb J, Vedder N, et al. The impact of IL-10 and IL-17 on myeloid-derived suppressor cells in vitro and in vivo in a murine model of asthma. Eur J Immunol. 2024;54(7):e2350785. doi: 10.1002/eji.202350785
- Akdis CA. Immunological mechanisms and treatment of allergic diseases: NLRP3 inflammasome in focus. Journal of Allergy and Clinical Immunology. 2019;144(2):375–385. doi: 10.1016/j.jaci.2019.06.001
- Zhang X, Wang Z, Zheng Y, et al. Inhibitors of the NLRP3 inflammasome pathway as promising therapeutic candidates for inflammatory diseases (Review). Int J Mol Med. 2023;51(4):35. doi: 10.3892/ijmm.2023.5238
- Tang J, Liu Y, Wu Y, et al. Saponins as potential novel NLRP3 inflammasome inhibitors for inflammatory disorders. Arch Pharm Res. 2024;47(10–11):757–792. doi: 10.1007/s12272-024-01517-x
- Li H, Guan Y, Liang B, et al. Therapeutic potential of MCC950, a specific inhibitor of NLRP3 inflammasome. Eur J Pharmacol. 2022;928:175091. doi: 10.1016/j.ejphar.2022.175091
- Netea MG, Joosten LA. Inflammasome inhibition: Putting out the fire. Cell Metab. 2015;21(4):513–514. doi: 10.1016/j.cmet.2015.03.012
- Angosto-Bazarra D, Molina-López C, Peñín-Franch A, et al. Techniques to study inflammasome activation and inhibition by small molecules. Molecules. 2021;26(6):1704. doi: 10.3390/ molecules26061704
- Coll RC, Hill JR, Day CJ, et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol. 2019;15(6):556–559. doi: 10.1038/s41589-019-0277-7
- Wu D, Chen Y, Sun Y, et al. Target of MCC950 in Inhibition of NLRP3 Inflammasome Activation: a Literature Review. Inflammation. 2020;43(1):17–23. doi: 10.1007/s10753-019-01098-8
- Ward R, Li W, Abdul Y, et al. NLRP3 inflammasome inhibition with MCC950 improves diabetes-mediated cognitive impairment and vasoneuronal remodeling after ischemia. Pharmacol Res. 2019;142(237):250. doi: 10.1016/j.phrs.2019.01.035
- Zhai Y, Meng X, Ye T, et al. Inhibiting the NLRP3 inflammasome activation with MCC950 ameliorates diabetic encephalopathy in db/db mice. Molecules. 2018;23(3):1–14. doi: 10.3390/molecules23030522
- Dempsey C, Araiz AR, Bryson KJ, et al. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice. Brain Behav Immun. 2017;61:306–316. doi: 10.1016/j.bbi.2016.12.014
- Van der Heijden T, Kritikou E, Venema W, et al. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice-brief report. Arterioscler Thromb Vasc Biol. 2017;37(8):1457–1461. doi: 10.1161/ATVBAHA.117.309575
- Qu J, Yuan Z, Wang G, et al. The selective NLRP3 inflammasome inhibitor MCC950 alleviates cholestatic liver injury and fibrosis in mice. Int Immunopharmacol. 2019;70:147–155. doi: 10.1016/j.intimp.2019.02.016
- Chen S, Yao L, Huang P, et al. Blockade of the NLRP3/caspase-1 axis ameliorates airway neutrophilic inflammation in a toluene diisocyanate-induced murine asthma model. Toxicol. Sci. 2019;170(2):462–475. doi: 10.1093/toxsci/kfz099
Supplementary files
