Non-Coding Nucleic Acid Sequences and Female Infertility
- Authors: Morozovsky M.A.1, Spirina L.V.1,2, Merkulov E.D.1
-
Affiliations:
- Siberian State Medical University
- Cancer Research Institute — Tomsk National Research Medical Center
- Issue: Vol 106, No 3 (2025)
- Pages: 414-421
- Section: Reviews
- URL: https://journal-vniispk.ru/kazanmedj/article/view/311410
- DOI: https://doi.org/10.17816/KMJ635674
- EDN: https://elibrary.ru/YXEJCE
- ID: 311410
Cite item
Abstract
Female infertility is one of the least investigated forms of reproductive dysfunction. This review presents promising molecular factors associated with infertility and analyzes the mechanisms involved in its manifestation and progression. Globally, up to 17.5% of couples experience infertility, which can negatively affect individual health and society as a whole. Female-related factors account for approximately 37% of cases. The presence of numerous factors associated with chronic inflammatory diseases of the reproductive system, including genetic and environmental influences, pose significant challenges for treatment of this patient population. Epigenetic mechanisms represent promising targets for regulation. MicroRNAs (miRNAs) are short non-coding RNA sequences that are approximately 18–25 nucleotides long. They regulate a wide range of various physiological processes within the cell, including cell growth, signal transduction, apoptosis, and pathological processes. Several miRNAs, including miR-324, miR-155, miR-335-5p, miR-9119, miR-23a, miR-27a, and miR-146b-5p, may be associated with female infertility. The role of long non-coding sequences influencing the activity of key targets involved in granulosa cell maturation is also highlighted. These factors have been shown to act as regulatory RNAs and mediate the decidualization of stromal cells. Particular attention is given to circulating miRNAs such as let-7b, miR-29a, miR-30a, miR-140, and miR-320a.
Full Text
##article.viewOnOriginalSite##About the authors
Maxim A. Morozovsky
Siberian State Medical University
Email: morozovskiy0m@gmail.com
ORCID iD: 0009-0001-5841-0606
4 year student, Faculty of Medicine and Biology
Russian Federation, 2 Moskovsky trakt st, Tomsk, 634050Liudmila V. Spirina
Siberian State Medical University; Cancer Research Institute — Tomsk National Research Medical Center
Email: spirinalvl@mail.ru
ORCID iD: 0000-0002-5269-736X
SPIN-code: 1336-8363
MD, Dr. Sci. (Medicine), Assistant Professor, Depart. of Biochemistry and Molecular Biology with a course in Clinical Laboratory Diagnostics, Leading research associate, Lab. of Tumor Biochemistry
Russian Federation, 2 Moskovsky trakt st, Tomsk, 634050; TomskEvgeny D. Merkulov
Siberian State Medical University
Author for correspondence.
Email: evmerc@mail.ru
ORCID iD: 0000-0002-7082-9389
4 year student, Faculty of Medicine and Biology
Russian Federation, 2 Moskovsky trakt st, Tomsk, 634050References
- Męczekalski B, Niwczyk O, Battipaglia C, et al. Neuroendocrine disturbances in women with functional hypothalamic amenorrhea: an update and future directions. Endocrine. 2023;84(3):769–785. doi: 10.1007/s12020-023-03619-w EDN: XLBEHI
- Mihalas BP, Redgrove KA, McLaughlin EA, Nixon B. Molecular mechanisms responsible for increased vulnerability of the ageing oocyte to oxidative damage. Oxid Med Cell Longev. 2017;2017:4015874. doi: 10.1155/2017/4015874
- Gordon CM, Ackerman KE, Berga SL, et al. Functional hypothalamic amenorrhea: an endocrine society clinical practice guideline. J Clin Endocrinol Metabol. 2017;102(5):1413–1439. doi: 10.1210/jc.2017-00131 EDN: SVDBOH
- Canipari R, De Santis L, Cecconi S. Female fertility and environmental pollution. IJERPH. 2020;17(23):8802. doi: 10.3390/ijerph17238802 EDN: RDOMJG
- Vitagliano A, Petre GC, Francini-Pesenti F, et al. Dietary supplements for female infertility: a critical review of their composition. Nutrients. 2021;13(10):3552. doi: 10.3390/nu13103552 EDN: VZBVHW
- Łakoma K, Kukharuk O, Śliż D. the influence of metabolic factors and diet on fertility. Nutrients. 2023;15(5):1180. doi: 10.3390/nu15051180 EDN: PPPGUO
- Silvestris E, Lovero D, Palmirotta R. Nutrition and female fertility: an interdependent correlation. Front Endocrinol. 2019;10:346. doi: 10.3389/fendo.2019.00346 EDN: LZOGAB
- Panth N, Gavarkovs A, Tamez M, Mattei J. The influence of diet on fertility and the implications for public health nutrition in the United States. Front Public Health. 2018;6:211. doi: 10.3389/fpubh.2018.00211
- Simionescu G, Doroftei B, Maftei R, et al. The complex relationship between infertility and psychological distress (Review). Exp Ther Med. 2021;21(4):306. doi: 10.3892/etm.2021.9737 EDN: TRWKUA
- Skoracka K, Ratajczak AE, Rychter AM, et al. female fertility and the nutritional approach: the most essential aspects. Adv Nutr. 2021;12(6):2372–2386. doi: 10.1093/advances/nmab068 EDN: BQCFOD
- Munro MG, Balen AH, Cho S, et al; FIGO Committee on menstrual disorders and related health impacts, and FIGO committee on reproductive medicine, endocrinology, and infertility. The FIGO ovulatory disorders classification system†. Hum Reprod. 2022;37(10):2446–2464. doi: 10.1093/humrep/deac180.;PMCID EDN: BPEQCK
- Sasaki H, Hamatani T, Kamijo S, et al. Impact of oxidative stress on age-associated decline in oocyte developmental competence. Front Endocrinol. 2019;10:811. doi: 10.3389/fendo.2019.00811
- Ding X, Schimenti JC. Female infertility from oocyte maturation arrest: assembling the genetic puzzle. EMBO Mol Med. 2023;15(6):e17729. doi: 10.15252/emmm.202317729 EDN: RRRYTY
- Wang W, Guo J, Shi J, et al. Bi-allelic pathogenic variants in PABPC1L cause oocyte maturation arrest and female infertility. EMBO Mol Med. 2023;15(6):e17177. doi: 10.15252/emmm.202217177 EDN: RWDJKO
- Feng R, Sang Q, Kuang Y, et al. Mutations in TUBB8 and human oocyte meiotic arrest. N Engl J Med. 2016;374(3):223–232. doi: 10.1056/NEJMoa1510791
- Feng R, Yan Z, Li B, et al. Mutations in TUBB8 cause a multiplicity of phenotypes in human oocytes and early embryos. J Med Genet. 2016;53(10):662–671. doi: 10.1136/jmedgenet-2016-103891
- Chen B, Zhang Z, Sun X, et al. Biallelic mutations in PATL2 cause female infertility characterized by oocyte maturation arrest. Am J Hum Genet. 2017;101(4):609–615. doi: 10.1016/j.ajhg.2017.08.018
- Dougherty MP, Poch AM, Chorich LP, et al. Unexplained female infertility associated with genetic disease variants. N Engl J Med. 2023;388(11):1055–1056. doi: 10.1056/NEJMc2211539 EDN: FSBJSH
- Huang HL, Lv C, Zhao YC, et al. Mutant ZP1 in familial infertility. N Engl J Med. 2014;370(13):1220–1226. doi: 10.1056/NEJMoa1308851
- Liu W, Li K, Bai D, et al. Dosage effects of ZP2 and ZP3 heterozygous mutations cause human infertility. Hum Genet. 2017;136(8):975–985. doi: 10.1007/s00439-017-1822-7 EDN: DFYPZF
- Fontana L, Garzia E, Marfia G, et al. Epigenetics of functional hypothalamic amenorrhea. Front Endocrinol. 2022;13:953431. doi: 10.3389/fendo.2022.953431 EDN: BKBEVO
- Geng X, Zhao J, Huang J, et al. lnc-MAP3K13-7:1 Inhibits Ovarian GC Proliferation in PCOS via DNMT1 Downregulation-mediated CDKN1A promoter hypomethylation. Mol Ther. 2021;29(3):1279–1293. doi: 10.1016/j.ymthe.2020.11.018 EDN: JTBOTQ
- Bahmyari S, Jamali Z, Khatami SH, et al. MICRORNAS in female infertility: an overview. Cell Biochem Funct. 2021;39(8):955–969. doi: 10.1002/cbf.3671 EDN: SRRPYC
- Guo Y, Sun J, Lai D. Role of microRNAs in premature ovarian insufficiency. Reprod Biol Endocrinol. 2017;15(1):38. doi: 10.1186/s12958-017-0256-3 EDN: ZQDWQN
- Yuanyuan Z, Zeqin W, Xiaojie S, et al. proliferation of ovarian granulosa cells in polycystic ovarian syndrome is regulated by MicroRNA-24 by targeting wingless-type family member 2B (WNT2B). Med Sci Monit. 2019;25:4553–4559. doi: 10.12659/MSM.915320 EDN: DXAWRG
- Xia H, Zhao Y. miR-155 is high-expressed in polycystic ovarian syndrome and promotes cell proliferation and migration through targeting PDCD4 in KGN cells. Artif Cells Nanomed Biotechnol. 2020;48(1):197–205. doi: 10.1080/21691401.2019.1699826
- Wang L, Chen Y, Wu S, et al. miR-135a Suppresses granulosa cell growth by targeting Tgfbr1 and Ccnd2 during folliculogenesis in mice. Cells. 2021;10(8):2104. doi: 10.3390/cells10082104 EDN: WFRBWD
- Yao L, Li M, Hu J, et al. MiRNA-335-5p negatively regulates granulosa cell proliferation via SGK3 in PCOS. Reproduction. 2018;156(5):439–449. doi: 10.1530/REP-18-0229
- Ding Y, He P, Li Z. MicroRNA-9119 regulates cell viability of granulosa cells in polycystic ovarian syndrome via mediating Dicer expression. Mol Cell Biochem. 2020;465(1–2):187–197. doi: 10.1007/s11010-019-03678-6 EDN: MPFXUM
- Nie M, Yu S, Peng S, et al. miR-23a and miR-27a promote human granulosa cell apoptosis by targeting SMAD51. Biol Reproduct. 2015;93(4). doi: 10.1095/biolreprod.115.130690
- Dong L, Xin X, Chang HM, et al. Expression of long noncoding RNAs in the ovarian granulosa cells of women with diminished ovarian reserve using high-throughput sequencing. J Ovarian Res. 2022;15(1):119. doi: 10.1186/s13048-022-01053-6 EDN: DFHTBN
- Xiang Z, Lv Q, Chen X, et al. Lnc GNG12-AS1 knockdown suppresses glioma progression through the AKT/GSK-3β/β-catenin pathway. Biosci Rep. 2020;40(8):BSR20201578. doi: 10.1042/BSR20201578
- Aljubran F, Nothnick WB. Long non-coding RNAs in endometrial physiology and pathophysiology. Mol Cell Endocrinol. 2021;525:111190. doi: 10.1016/j.mce.2021.111190 EDN: GVVWEV
- Takamura M, Zhou W, Rombauts L, Dimitriadis E. The long noncoding RNA PTENP1 regulates human endometrial epithelial adhesive capacity in vitro: implications in infertility. Biol Reproduct. 2020;102(1):53–62. doi: 10.1093/biolre/ioz173
- Scalici E, Traver S, Mullet T, et al. Circulating microRNAs in follicular fluid, powerful tools to explore in vitro fertilization process. Sci Rep. 2016;6(1):24976. doi: 10.1038/srep24976
- Galimov ShN, Galimova EF, Gilyazova IR, et al. Expression of exosomal microRNAs miR-34a and miR-210 in male infertility: relationship with morphokinetic parameters and sperm DNA fragmentation. Urology Herald. 2024;12(4):34–42. doi: 10.21886/2308-6424-2024-12-4-34-42 EDN: FAFNXQ
Supplementary files


