Role of placental extracellular vesicles in the physiology and pathology of pregnancy
- Authors: Mustafin I.G.1, Kurmanbaev T.E.2, Yupatov E.Y.3,4, Nabiullina R.M.1, Mukhametzyanova Z.R.1
-
Affiliations:
- Kazan State Medical University
- Kirov Military medical academy
- Russian Medical Academy of Continuous Professional Education
- Kazan Federal University
- Issue: Vol 106, No 4 (2025)
- Pages: 619-625
- Section: Reviews
- URL: https://journal-vniispk.ru/kazanmedj/article/view/316047
- DOI: https://doi.org/10.17816/KMJ642505
- EDN: https://elibrary.ru/SLZOIL
- ID: 316047
Cite item
Abstract
Extracellular vesicles are membrane-limited nanovesicles of endosomal or plasma membrane origin present in most biological fluids. They are capable of transporting various substances and are considered biomarkers of pathological conditions. In preeclampsia, increased levels of placental extracellular vesicles containing antiangiogenic factors have been observed. Moreover, placental extracellular vesicles in preeclampsia are characterized by low strongly anti-inflammatory factor levels and increased high-mobility group nuclear protein levels, indicating cellular damage. Similar to other pathological conditions, the onset of preeclampsia is accompanied by increased extracellular vesicle concentrations, which are detectable as early as 11 weeks of gestation. This review aimed to highlight the role of extracellular vesicles in the course of pregnancy and in the development of preeclampsia. Full-text review and original research articles published in Russian and English were comprehensively analyzed using the eLibrary.Ru, Google Scholar, and PubMed databases, covering the period from 1989 to 2024. The search employed the following keywords: плацентарные внеклеточные везикулы (placental extracellular vesicles), внеклеточные везикулы во время беременности (extracellular vesicles during pregnancy), and внеклеточные везикулы и преэклампсия (extracellular vesicles and preeclampsia). Severe preeclampsia has been associated with a significant increase in the number of extracellular vesicles of various origins. Several authors have demonstrated that placental extracellular vesicles can enter the fetal circulation; however, whether they induce a harmful effect on the fetus remains unclear. Placental extracellular vesicles play a crucial physiological role during pregnancy. They serve as indicators of gestational progression, which makes it possible to quantify them for the prediction of various pregnancy complications.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Ilshat G. Mustafin
Kazan State Medical University
Email: ilshat64@mail.ru
ORCID iD: 0000-0001-9683-3012
SPIN-code: 1588-6988
MD, Dr. Sci. (Medicine), Professor, Head of Depart. of Biochemistry and Clinical Laboratory Diagnostics
Russian Federation, Kazan49 Butlerova st, Kazan, 420012Timur E. Kurmanbaev
Kirov Military medical academy
Email: timka_rus@inbox.ru
ORCID iD: 0000-0003-0644-5767
SPIN-code: 7818-6181
MD, Cand. Sci. (Medicine), Senior Lecturer, Depart. of Obstetrics and Gynecology
Russian Federation, Saint PetersburgEvgenii Y. Yupatov
Russian Medical Academy of Continuous Professional Education; Kazan Federal University
Email: e.yupatov@mcclinics.ru
ORCID iD: 0000-0001-8945-8912
SPIN-code: 3094-6491
MD, Dr. Sci. (Medicine), Assistant Professor, Head of Depart., Depart. of Obstetrics and Gynecology; Kazan State Medical Academy — Branch of the Russian Medical Academy of Continuous Professional Education
Russian Federation, Kazan; KazanRosa M. Nabiullina
Kazan State Medical University
Email: nabiullina.rosa@yandex.ru
ORCID iD: 0000-0001-5942-5335
SPIN-code: 9596-0831
MD, Cand. Sci. (Medicine), Assistant Professor, Depart. of Biochemistry and Clinical Laboratory Diagnostics
Russian Federation, 49 Butlerova st, Kazan, 420012Zarina R. Mukhametzyanova
Kazan State Medical University
Author for correspondence.
Email: zarinam75@gmail.com
ORCID iD: 0000-0002-7525-7455
SPIN-code: 1117-8860
Postgraduate Student, Depart. of Biochemistry and Clinical Laboratory Diagnostics
Russian Federation, 49 Butlerova st, Kazan, 420012References
- Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;(200):373–83. doi: 10.1083/jcb.201211138
- O’Neil EV, Burns GW, Spencer TE. Extracellular vesicles: Novel regulators of conceptus-uterine interactions? Theriogenology. 2020;(150):106–112. doi: 10.1016/j.theriogenology.2020.01.083 EDN: EROARI
- Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2013;2. doi: 10.3402/jev.v2i0.20389
- Laulagnier K, Motta C, Hamdi S, et al. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J. 2004;(380):161–171. doi: 10.1042/bj20031594
- Skotland T, Hessvik NP, Sandvig K, et al. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J Lipid Res. 2019;(60):9–18. doi: 10.1194/jlr.R084343
- Simpson RJ, Jensen SS, Lim JW. Proteomic profiling of exosomes: current perspectives. Proteomics. 2008;(8):4083–4099. doi: 10.1002/pmic.200800109
- Keller S, Ridinger J, Rupp AK, et al. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med. 2011;(9):86. doi: 10.1186/1479-5876-9-86 EDN: HRWNUY
- Record M, Silvente-Poirot S, Poirot M, Wakelam MJO. Extracellular vesicles: lipids as key components of their biogenesis and functions. J Lipid Res. 2018;(59):1316–1324. doi: 10.1194/jlr.E086173
- Subra C, Grand D, Laulagnier K, et al. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res. 2010;(51):2105–2120. doi: 10.1194/jlr.M003657 EDN: NZVXHF
- Kosaka N, Iguchi H, Yoshioka Y, et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;(285):17442–17452. doi: 10.1074/jbc.M110.107821
- Lonergan P, Fair T, Forde N, Rizos D. Embryo development in dairy cattle. Theriogenology. 2016;(86):270–277. doi: 10.1016/j.theriogenology.2016.04.040
- Wang J, Guillomot M, Hue I. Cellular organization of the trophoblastic epithelium in elongating conceptuses of ruminants. C R Biol. 2009;(332):986–997. doi: 10.1016/j.crvi.2009.09.004
- Wales RG, Cuneo CL. Morphology and chemical analysis of the sheep conceptus from the 13th to the 19th day of pregnancy. Reprod Fertil Dev. 1989;(1):31–39. doi: 10.1071/RD9890031
- Giannubilo SR, Marzioni D, Tossetta G, et al. The “Bad Father”: Paternal Role in Biology of Pregnancy and in Birth Outcome. Biology. 2024;(13):165. doi: 10.3390/biology13030165 EDN: UKBDPM
- Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;(3). doi: 10.3402/jev.v3.24641 EDN: YERXCY
- Ng YH, Rome S, Jalabert A, et al. Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation. PLoS One. 2013;(8):e58502. doi: 10.1371/journal.pone.0058502
- Vilella F, Moreno-Moya JM, Balaguer N, et al. Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome. Development. 2015;(142):3210–3221. doi: 10.1242/dev.124289
- Greening DW, Nguyen HP, Elgass K, et al. Human endometrial exosomes contain hormone-specific cargo modulating trophoblast adhesive capacity: insights into endometrial-embryo interactions. Biol Reprod. 2016;(94):38. doi: 10.1095/biolreprod.115.134890
- Evans J, Rai A, Nguyen HPT, et al. In vitro human implantation model reveals a role for endometrial extracellular vesicles in embryo implantation: reprogramming the cellular and secreted proteome landscapes for bidirectional fetal-maternal communication. Proteomics. 2019:e1800423. doi: 10.1002/pmic.201800423 EDN: PYHKSB
- Iupatov EYu, Mustafin IG, Kurmanbaev TE, et al. Local hemostasis disorders underlying endometric pathology. Obstetrics, Gynecology and Reproduction. 2020;15(4):430–440. doi: 10.17749/2313-7347/ob.gyn.rep.2021.214 EDN: UNIBMF
- Chen K, Liang J, Qin T, et al. The Role of Extracellular Vesicles in Embryo Implantation. Front Endocrinol. 2022;(13):809596. doi: 10.3389/fendo.2022.809596 EDN: HMFEHH
- Sabapatha A, Gercel-Taylor C, Taylor DD. Specific isolation of placenta-derived exosomes from the circulation of pregnant women and their immunoregulatory consequences. Am J Reprod Immunol. 2006;(56):345–355. doi: 10.1111/j.1600-0897.2006.00435.x
- Abolbaghaei A, Langlois MA, Murphy HR, et al. Circulating extracellular vesicles during pregnancy in women with type 1 diabetes: a secondary analysis of the CONCEPTT trial. Biomark Res. 2021;(9):1–10. doi: 10.1186/s40364-021-00322-8 EDN: DYTIWY
- Bathla T, Abolbaghaei A, Reyes AB, Burger D. Extracellular vesicles in gestational diabetes mellitus: A scoping review. Diab Vasc Dis Res. 2022;19(2):14791641221093901. doi: 10.1177/14791641221093901 EDN: AEQNBA
- Miranda J, Paules C, Nair S, et al. Placental exosomes profile in maternal and fetal circulation in intrauterine growth restriction – Liquid biopsies to monitoring fetal growth. Placenta. 2018;(64):34–43. doi: 10.1016/j.placenta.2018.02.006
- Mincheva-Nilsson L, Baranov V. Placenta-derived exosomes and syncytiotrophoblast microparticles and their role in human reproduction: immune modulation for pregnancy success. Am J Reprod Immunol. 2014;72(5):440–457. doi: 10.1111/aji.12311
- Kshirsagar SK, Alam SM, Jasti S, et al. Immunomodulatory molecules are released from the first trimester and term placenta via exosomes. Placenta. 2012;33(12):982–990. doi: 10.1016/j.placenta.2012.10.005
- Hedlund M, Stenqvist AC, Nagaeva O, et al. Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function. J Immunol. 2009;181(1):340–351. doi: 10.4049/jimmunol.0803477
- Than NG, Abdul Rahman O, Magenheim R, et al. Placental protein 13 (galectin-13) has decreased placental expression but increased shedding and maternal serum concentrations in patients presenting with preterm pre-eclampsia and HELLP syndrome. Virchows Arch. 2008;453(4):387–400. doi: 10.1007/s00428-008-0658-x EDN: JPJLYR
- Mikaelyan AG, Marey MV, Sukhanova YuA, et al. Characteristics of the microvesule composition in physiological pregnancy and pregnancy complicated by the intrauterine growth restriction. Obstetrics and Gynecology: News, Opinions, Training. 2019;7(4):25–31. doi: 10.24411/2303-9698-2019-14002 EDN: PCAQOV
- Atay S, Gercel-Taylor C, Taylor DD. Human trophoblast-derived exosomal fibronectin induces pro-inflammatory IL-1beta production by macrophages. Am J Reprod Immunol. 2011;66(4):259–269. doi: 10.1111/j.1600-0897.2011.00995.x
- Preeclampsia. Eclampsia. Edema, proteinuria and hypertensive disorders during pregnancy, childbirth and the postpartum period. Clinical recommendations. Moscow, 2021. 79 p. (In Russ.)
- Jung E, Romero R, Yeo L, et al. The etiology of preeclampsia. Am J Obstet Gynecol. 2022;226(2):S844–S866. doi: 10.1016/j.ajog.2021.11.1356 EDN: TABGLI
- Chaemsaithong P, Sahota DS, Poon LC. First trimester preeclampsia screening and prediction. Am J Obstet Gynecol. 2022;226(2):S1071–S1097. doi: 10.1016/j.ajog.2020.07.020 EDN: VHKXKU
- Vargas A, Zhou S, Ethier-Chiasson M, et al. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J. 2014;(28):3703–3719. doi: 10.1096/fj.13-239053
- Salomon C, Guanzon D, Scholz-Romero K, et al. Placental Exosomes as Early Biomarker of Preeclampsia: Potential Role of Exosomal MicroRNAs Across Gestation. J Clin Endocrinol Metab. 2017;(102):3182–3194. doi: 10.1210/jc.2017-00672
- Morgoyeva AA, Tsakhilovа SG, Sakvarelidze NYu, et al. The role of extracellular vesicles in the development of endothelial dysfunction in preeclampsia. Effective pharmacotherapy. 2021;17(32):8–12. doi: 10.33978/2307-3586-2021-17-32-8-12 EDN: LMRRTF
- Schuster J, Cheng SB, Padbury J, et al. Placental extracellular vesicles and preeclampsia. Am J Reprod Immunol. 2021;85(2):1–16. doi: 10.1111/aji.13297 EDN: BIAEQU
- Gill M, Motta-Mejia C, Kandzija N, et al. Placental syncytiotrophoblast-derived extracellular vesicles carry active NEP (neprilysin) and are increased in preeclampsia. Hypertension. 2019;73(5):1112–1119. doi: 10.1161/HYPERTENSIONAHA.119.12707
- McElrath TF, Cantonwine DE, Gray KJ, et al. Late first trimester circulating microparticle proteins predict the risk of preeclampsia< 35 weeks and suggest phenotypic differences among affected cases. Sci rep. 2020;10(1):17353. doi: 10.1038/s41598-020-74078-w EDN: RFXAFE
- Han C, Wang C, Chen Y, et al. Placenta-derived extracellular vesicles induce preeclampsia in mouse models. Haematologica. 2020;105(6):1686. doi: 10.3324/haematol.2019.226209 EDN: SZTTNK
- Mustafin IG, Kurmanbaev TE, Yupatov EYu, et al. Clinical and pathophysiological aspects of microvesicular composition of peripheral blood in pregnant women with preeclampsia. Bulletin of modern clinical medicine. 2024;17(3):36–43. doi: 10.20969/VSKM.2024.17(3).36-43 EDN: HYXWMT
- Condrat CE, Varlas VN, Duică F, et al. Pregnancy-related extracellular vesicles revisited. Int J Mol Sci. 2021;22(8):3904. doi: 10.3390/ijms22083904 EDN: CVPKKE
- Adamova P, Lotto RR, Powell AK, Dykes IM. Are there foetal extracellular vesicles in maternal blood? Prospects for diagnostic biomarker discovery. J Mol Med. 2023;101(1):65–81. doi: 10.1007/s00109-022-02278-0 EDN: CQBYWH
- Marell PS, Blohowiak SE, Evans MD, et al. Cord blood-derived exosomal CNTN2 and BDNF: potential molecular markers for brain health of neonates at risk for iron deficiency. Nutrients. 2019;11(10):1–11. doi: 10.3390/nu11102478
- Goetzl L, Darbinian N, Merabova N. Noninvasive assessment of fetal central nervous system insult: potential application to prenatal diagnosis. Prenat Diagn. 2019;39(8):609–615. doi: 10.1002/pd.5474
Supplementary files
