Role of placental extracellular vesicles in the physiology and pathology of pregnancy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Extracellular vesicles are membrane-limited nanovesicles of endosomal or plasma membrane origin present in most biological fluids. They are capable of transporting various substances and are considered biomarkers of pathological conditions. In preeclampsia, increased levels of placental extracellular vesicles containing antiangiogenic factors have been observed. Moreover, placental extracellular vesicles in preeclampsia are characterized by low strongly anti-inflammatory factor levels and increased high-mobility group nuclear protein levels, indicating cellular damage. Similar to other pathological conditions, the onset of preeclampsia is accompanied by increased extracellular vesicle concentrations, which are detectable as early as 11 weeks of gestation. This review aimed to highlight the role of extracellular vesicles in the course of pregnancy and in the development of preeclampsia. Full-text review and original research articles published in Russian and English were comprehensively analyzed using the eLibrary.Ru, Google Scholar, and PubMed databases, covering the period from 1989 to 2024. The search employed the following keywords: плацентарные внеклеточные везикулы (placental extracellular vesicles), внеклеточные везикулы во время беременности (extracellular vesicles during pregnancy), and внеклеточные везикулы и преэклампсия (extracellular vesicles and preeclampsia). Severe preeclampsia has been associated with a significant increase in the number of extracellular vesicles of various origins. Several authors have demonstrated that placental extracellular vesicles can enter the fetal circulation; however, whether they induce a harmful effect on the fetus remains unclear. Placental extracellular vesicles play a crucial physiological role during pregnancy. They serve as indicators of gestational progression, which makes it possible to quantify them for the prediction of various pregnancy complications.

About the authors

Ilshat G. Mustafin

Kazan State Medical University

Email: ilshat64@mail.ru
ORCID iD: 0000-0001-9683-3012
SPIN-code: 1588-6988

MD, Dr. Sci. (Medicine), Professor, Head of Depart. of Biochemistry and Clinical Laboratory Diagnostics

Russian Federation, Kazan49 Butlerova st, Kazan, 420012

Timur E. Kurmanbaev

Kirov Military medical academy

Email: timka_rus@inbox.ru
ORCID iD: 0000-0003-0644-5767
SPIN-code: 7818-6181

MD, Cand. Sci. (Medicine), Senior Lecturer, Depart. of Obstetrics and Gynecology

Russian Federation, Saint Petersburg

Evgenii Y. Yupatov

Russian Medical Academy of Continuous Professional Education; Kazan Federal University

Email: e.yupatov@mcclinics.ru
ORCID iD: 0000-0001-8945-8912
SPIN-code: 3094-6491

MD, Dr. Sci. (Medicine), Assistant Professor, Head of Depart., Depart. of Obstetrics and Gynecology; Kazan State Medical Academy — Branch of the Russian Medical Academy of Continuous Professional Education

Russian Federation, Kazan; Kazan

Rosa M. Nabiullina

Kazan State Medical University

Email: nabiullina.rosa@yandex.ru
ORCID iD: 0000-0001-5942-5335
SPIN-code: 9596-0831

MD, Cand. Sci. (Medicine), Assistant Professor, Depart. of Biochemistry and Clinical Laboratory Diagnostics

Russian Federation, 49 Butlerova st, Kazan, 420012

Zarina R. Mukhametzyanova

Kazan State Medical University

Author for correspondence.
Email: zarinam75@gmail.com
ORCID iD: 0000-0002-7525-7455
SPIN-code: 1117-8860

Postgraduate Student, Depart. of Biochemistry and Clinical Laboratory Diagnostics

Russian Federation, 49 Butlerova st, Kazan, 420012

References

  1. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;(200):373–83. doi: 10.1083/jcb.201211138
  2. O’Neil EV, Burns GW, Spencer TE. Extracellular vesicles: Novel regulators of conceptus-uterine interactions? Theriogenology. 2020;(150):106–112. doi: 10.1016/j.theriogenology.2020.01.083 EDN: EROARI
  3. Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2013;2. doi: 10.3402/jev.v2i0.20389
  4. Laulagnier K, Motta C, Hamdi S, et al. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J. 2004;(380):161–171. doi: 10.1042/bj20031594
  5. Skotland T, Hessvik NP, Sandvig K, et al. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J Lipid Res. 2019;(60):9–18. doi: 10.1194/jlr.R084343
  6. Simpson RJ, Jensen SS, Lim JW. Proteomic profiling of exosomes: current perspectives. Proteomics. 2008;(8):4083–4099. doi: 10.1002/pmic.200800109
  7. Keller S, Ridinger J, Rupp AK, et al. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med. 2011;(9):86. doi: 10.1186/1479-5876-9-86 EDN: HRWNUY
  8. Record M, Silvente-Poirot S, Poirot M, Wakelam MJO. Extracellular vesicles: lipids as key components of their biogenesis and functions. J Lipid Res. 2018;(59):1316–1324. doi: 10.1194/jlr.E086173
  9. Subra C, Grand D, Laulagnier K, et al. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res. 2010;(51):2105–2120. doi: 10.1194/jlr.M003657 EDN: NZVXHF
  10. Kosaka N, Iguchi H, Yoshioka Y, et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;(285):17442–17452. doi: 10.1074/jbc.M110.107821
  11. Lonergan P, Fair T, Forde N, Rizos D. Embryo development in dairy cattle. Theriogenology. 2016;(86):270–277. doi: 10.1016/j.theriogenology.2016.04.040
  12. Wang J, Guillomot M, Hue I. Cellular organization of the trophoblastic epithelium in elongating conceptuses of ruminants. C R Biol. 2009;(332):986–997. doi: 10.1016/j.crvi.2009.09.004
  13. Wales RG, Cuneo CL. Morphology and chemical analysis of the sheep conceptus from the 13th to the 19th day of pregnancy. Reprod Fertil Dev. 1989;(1):31–39. doi: 10.1071/RD9890031
  14. Giannubilo SR, Marzioni D, Tossetta G, et al. The “Bad Father”: Paternal Role in Biology of Pregnancy and in Birth Outcome. Biology. 2024;(13):165. doi: 10.3390/biology13030165 EDN: UKBDPM
  15. Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;(3). doi: 10.3402/jev.v3.24641 EDN: YERXCY
  16. Ng YH, Rome S, Jalabert A, et al. Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation. PLoS One. 2013;(8):e58502. doi: 10.1371/journal.pone.0058502
  17. Vilella F, Moreno-Moya JM, Balaguer N, et al. Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome. Development. 2015;(142):3210–3221. doi: 10.1242/dev.124289
  18. Greening DW, Nguyen HP, Elgass K, et al. Human endometrial exosomes contain hormone-specific cargo modulating trophoblast adhesive capacity: insights into endometrial-embryo interactions. Biol Reprod. 2016;(94):38. doi: 10.1095/biolreprod.115.134890
  19. Evans J, Rai A, Nguyen HPT, et al. In vitro human implantation model reveals a role for endometrial extracellular vesicles in embryo implantation: reprogramming the cellular and secreted proteome landscapes for bidirectional fetal-maternal communication. Proteomics. 2019:e1800423. doi: 10.1002/pmic.201800423 EDN: PYHKSB
  20. Iupatov EYu, Mustafin IG, Kurmanbaev TE, et al. Local hemostasis disorders underlying endometric pathology. Obstetrics, Gynecology and Reproduction. 2020;15(4):430–440. doi: 10.17749/2313-7347/ob.gyn.rep.2021.214 EDN: UNIBMF
  21. Chen K, Liang J, Qin T, et al. The Role of Extracellular Vesicles in Embryo Implantation. Front Endocrinol. 2022;(13):809596. doi: 10.3389/fendo.2022.809596 EDN: HMFEHH
  22. Sabapatha A, Gercel-Taylor C, Taylor DD. Specific isolation of placenta-derived exosomes from the circulation of pregnant women and their immunoregulatory consequences. Am J Reprod Immunol. 2006;(56):345–355. doi: 10.1111/j.1600-0897.2006.00435.x
  23. Abolbaghaei A, Langlois MA, Murphy HR, et al. Circulating extracellular vesicles during pregnancy in women with type 1 diabetes: a secondary analysis of the CONCEPTT trial. Biomark Res. 2021;(9):1–10. doi: 10.1186/s40364-021-00322-8 EDN: DYTIWY
  24. Bathla T, Abolbaghaei A, Reyes AB, Burger D. Extracellular vesicles in gestational diabetes mellitus: A scoping review. Diab Vasc Dis Res. 2022;19(2):14791641221093901. doi: 10.1177/14791641221093901 EDN: AEQNBA
  25. Miranda J, Paules C, Nair S, et al. Placental exosomes profile in maternal and fetal circulation in intrauterine growth restriction – Liquid biopsies to monitoring fetal growth. Placenta. 2018;(64):34–43. doi: 10.1016/j.placenta.2018.02.006
  26. Mincheva-Nilsson L, Baranov V. Placenta-derived exosomes and syncytiotrophoblast microparticles and their role in human reproduction: immune modulation for pregnancy success. Am J Reprod Immunol. 2014;72(5):440–457. doi: 10.1111/aji.12311
  27. Kshirsagar SK, Alam SM, Jasti S, et al. Immunomodulatory molecules are released from the first trimester and term placenta via exosomes. Placenta. 2012;33(12):982–990. doi: 10.1016/j.placenta.2012.10.005
  28. Hedlund M, Stenqvist AC, Nagaeva O, et al. Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function. J Immunol. 2009;181(1):340–351. doi: 10.4049/jimmunol.0803477
  29. Than NG, Abdul Rahman O, Magenheim R, et al. Placental protein 13 (galectin-13) has decreased placental expression but increased shedding and maternal serum concentrations in patients presenting with preterm pre-eclampsia and HELLP syndrome. Virchows Arch. 2008;453(4):387–400. doi: 10.1007/s00428-008-0658-x EDN: JPJLYR
  30. Mikaelyan AG, Marey MV, Sukhanova YuA, et al. Characteristics of the microvesule composition in physiological pregnancy and pregnancy complicated by the intrauterine growth restriction. Obstetrics and Gynecology: News, Opinions, Training. 2019;7(4):25–31. doi: 10.24411/2303-9698-2019-14002 EDN: PCAQOV
  31. Atay S, Gercel-Taylor C, Taylor DD. Human trophoblast-derived exosomal fibronectin induces pro-inflammatory IL-1beta production by macrophages. Am J Reprod Immunol. 2011;66(4):259–269. doi: 10.1111/j.1600-0897.2011.00995.x
  32. Preeclampsia. Eclampsia. Edema, proteinuria and hypertensive disorders during pregnancy, childbirth and the postpartum period. Clinical recommendations. Moscow, 2021. 79 p. (In Russ.)
  33. Jung E, Romero R, Yeo L, et al. The etiology of preeclampsia. Am J Obstet Gynecol. 2022;226(2):S844–S866. doi: 10.1016/j.ajog.2021.11.1356 EDN: TABGLI
  34. Chaemsaithong P, Sahota DS, Poon LC. First trimester preeclampsia screening and prediction. Am J Obstet Gynecol. 2022;226(2):S1071–S1097. doi: 10.1016/j.ajog.2020.07.020 EDN: VHKXKU
  35. Vargas A, Zhou S, Ethier-Chiasson M, et al. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J. 2014;(28):3703–3719. doi: 10.1096/fj.13-239053
  36. Salomon C, Guanzon D, Scholz-Romero K, et al. Placental Exosomes as Early Biomarker of Preeclampsia: Potential Role of Exosomal MicroRNAs Across Gestation. J Clin Endocrinol Metab. 2017;(102):3182–3194. doi: 10.1210/jc.2017-00672
  37. Morgoyeva AA, Tsakhilovа SG, Sakvarelidze NYu, et al. The role of extracellular vesicles in the development of endothelial dysfunction in preeclampsia. Effective pharmacotherapy. 2021;17(32):8–12. doi: 10.33978/2307-3586-2021-17-32-8-12 EDN: LMRRTF
  38. Schuster J, Cheng SB, Padbury J, et al. Placental extracellular vesicles and preeclampsia. Am J Reprod Immunol. 2021;85(2):1–16. doi: 10.1111/aji.13297 EDN: BIAEQU
  39. Gill M, Motta-Mejia C, Kandzija N, et al. Placental syncytiotrophoblast-derived extracellular vesicles carry active NEP (neprilysin) and are increased in preeclampsia. Hypertension. 2019;73(5):1112–1119. doi: 10.1161/HYPERTENSIONAHA.119.12707
  40. McElrath TF, Cantonwine DE, Gray KJ, et al. Late first trimester circulating microparticle proteins predict the risk of preeclampsia< 35 weeks and suggest phenotypic differences among affected cases. Sci rep. 2020;10(1):17353. doi: 10.1038/s41598-020-74078-w EDN: RFXAFE
  41. Han C, Wang C, Chen Y, et al. Placenta-derived extracellular vesicles induce preeclampsia in mouse models. Haematologica. 2020;105(6):1686. doi: 10.3324/haematol.2019.226209 EDN: SZTTNK
  42. Mustafin IG, Kurmanbaev TE, Yupatov EYu, et al. Clinical and pathophysiological aspects of microvesicular composition of peripheral blood in pregnant women with preeclampsia. Bulletin of modern clinical medicine. 2024;17(3):36–43. doi: 10.20969/VSKM.2024.17(3).36-43 EDN: HYXWMT
  43. Condrat CE, Varlas VN, Duică F, et al. Pregnancy-related extracellular vesicles revisited. Int J Mol Sci. 2021;22(8):3904. doi: 10.3390/ijms22083904 EDN: CVPKKE
  44. Adamova P, Lotto RR, Powell AK, Dykes IM. Are there foetal extracellular vesicles in maternal blood? Prospects for diagnostic biomarker discovery. J Mol Med. 2023;101(1):65–81. doi: 10.1007/s00109-022-02278-0 EDN: CQBYWH
  45. Marell PS, Blohowiak SE, Evans MD, et al. Cord blood-derived exosomal CNTN2 and BDNF: potential molecular markers for brain health of neonates at risk for iron deficiency. Nutrients. 2019;11(10):1–11. doi: 10.3390/nu11102478
  46. Goetzl L, Darbinian N, Merabova N. Noninvasive assessment of fetal central nervous system insult: potential application to prenatal diagnosis. Prenat Diagn. 2019;39(8):609–615. doi: 10.1002/pd.5474

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».