Predictive informativeness of risk factors for the development of ovarian cancer of different histological types: a randomized study

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Given the considerable morphological heterogeneity of invasive epithelial ovarian cancer, characterized by differences in clinical course and rates of progression, investigation of predictors specific to each histological type is of particular relevance.

AIM: This work aimed to identify the predictive significance of hereditary and phenotypic factors modulating the risk of developing different histological types of invasive epithelial ovarian cancer.

METHODS: A total of 620 patients with invasive epithelial ovarian cancer of various histological types were examined in the main group: serous carcinoma (57.7%), endometrioid carcinoma (23.1%), clear cell carcinoma (11.6%), and mucinous ovarian carcinoma (7.6%). The control group consisted of 226 women without cancer. Information on risk factors was obtained from medical records. Comparative analysis of the frequency characteristics of the studied variables between the main and control groups was performed using the Pearson chi-square (χ2) test. The strength of association was assessed using Cramér’s V coefficient.

RESULTS: Compared with the control group, the main group showed higher frequencies of ovarian cancer (7.7% vs. 0%; p < 0.001) and breast cancer (5.0% vs. 0%; p < 0.001) in first-degree relatives; obesity in childhood (11.3% vs. 5.3%; p = 0.002), obesity in adolescence (10.6% vs. 3.5%; p = 0.001), and obesity at the time of primary diagnosis (47.1% vs. 21.7%; p < 0.001). The main group more frequently reported the use of postmenopausal hormone replacement therapy (45.0% vs. 33.6%; p = 0.003) and endometriosis (13.4% vs. 7.5%; p = 0.02), whereas full-term pregnancy (p < 0.001), breastfeeding (p < 0.001), and oral contraceptive use (p < 0.001) were less frequent. For the development of advanced serous ovarian carcinoma, the most substantial predictors were hereditary factors, obesity at the time of diagnosis, and postmenopausal hormone replacement therapy. In comparison with serous carcinoma, the distinguishing predictors were endometriosis, late menopause, and obesity in childhood and adolescence for endometrioid carcinoma; endometriosis for clear cell carcinoma; and obesity in adolescence and smoking for mucinous ovarian carcinoma.

CONCLUSION: In rare histological types of invasive epithelial ovarian cancer, compared with serous carcinoma, the predictive significance of endometriosis, late menopause, smoking, and obesity in childhood and adolescence increases substantially.

About the authors

Maria Yu. Grafskaya

National Medical Research Center of Oncology

Email: mariagrafskaja@ya.ru
ORCID iD: 0009-0005-8204-705X
SPIN-code: 5882-7437

MD, Cand. Sci. (Medicine), doctoral student

Russian Federation, Rostov-on-Don

Ekaterina V. Verenikina

National Medical Research Center of Oncology

Email: ekat.veren@yandex.ru
ORCID iD: 0000-0002-1084-5176
SPIN-code: 6610-7824

MD, Dr. Sci. (Medicine), Head, Depart. of Oncogynecology

Russian Federation, Rostov-on-Don

Alexandra A. Demidova

Rostov State Medical University

Author for correspondence.
Email: alald@inbox.ru
ORCID iD: 0000-0003-3545-9359
SPIN-code: 4014-8502

MD, Dr. Sci. (Medicine), Assistant Professor, Head of Depart.

Russian Federation, Rostov-on-Don

Fedor E. Filippov

National Medical Research Center of Oncology

Email: fillippfe@rambler.ru
ORCID iD: 0009-0000-5996-1218
SPIN-code: 9483-1710

MD, Cand. Sci. (Medicine), doctoral student

Russian Federation, Rostov-on-Don

Natalia V. Karasenko

Rostov State Medical University

Email: karasenko64@mail.ru
ORCID iD: 0000-0002-7415-9546
SPIN-code: 9045-8888

MD, Cand. Sci. (Physics and Mathematics), Assistant Professor

Russian Federation, Rostov-on-Don

References

  1. Webb PM, Jordan SJ. Global epidemiology of epithelial ovarian cancer. Nat Rev Clin Oncol. 2024;21(5):389–400. doi: 10.1038/s41571-024-00881-3 EDN: MFXNHP
  2. De Leo A, Santini D, Ceccarelli C, et al. What Is New on Ovarian Carcinoma: Integrated Morphologic and Molecular Analysis Following the New 2020 World Health Organization Classification of Female Genital Tumors. Diagnostics. 2021;11(4):697. doi: 10.3390/diagnostics11040697 EDN: QQXFCJ
  3. Lheureux S, Gourley C, Vergote I, Oza AM. Epithelial ovarian cancer. Lancet. 2019;393:1240–1253. doi: 10.1016/S0140-6736(18)32552-2 EDN: FCJPKQ
  4. Thomsen LH, Schnack TH, Buchardi K, et al. Risk factors of epithelial ovarian carcinomas among women with endometriosis: a systematic review. Acta Obstet Gynecol Scand. 2017;96:761–778. doi: 10.1111/aogs.13010
  5. Nash Z, Menon U. Ovarian cancer screening: current status and future directions. Best Pract Res Clin Obstet Gynaecol. 2020;65:32–45. doi: 10.1016/j.bpobgyn.2020.02.010 EDN: PPVVAO
  6. Kim SJ, Rosen B, Fan I, et al. Epidemiologic factors that predict long-term survival following a diagnosis of epithelial ovarian cancer. Br J Cancer. 2017;116(7):964–971. doi: 10.1038/bjc.2017.35
  7. Karnezis AN, Cho KR, Gilks CB, et al. The disparate origins of ovarian cancers: pathogenesis and prevention strategies. Nat Rev Cancer. 2017;17(1):65–74. doi: 10.1038/nrc.2016.113
  8. Gersekowski K, Na R, Alsop K, et al. Risk Factors for Ovarian Cancer by BRCA Status: A Collaborative Case-Only Analysis. Cancer Epidemiol Biomarkers Prev. 2024;33(4):586–592. doi: 10.1158/1055-9965.EPI-23-0984 EDN: BGFRWZ
  9. Khvan OT, Ivanova KA, Abdullayev AG. Immunomorphological and molecular genetic diagnostics of malignant epithelial ovarian neoplasms. Onkoginekologija. 2024;4:35–42. EDN: MEIROO
  10. Evans O, Gaba F, Manchanda R. Population-based genetic testing for Women's cancer prevention. Best Pract Res Clin Obstet Gynaecol. 2020;65:139–153. doi: 10.1016/j.bpobgyn.2020.02.007 EDN: KCUJNW
  11. Rea LM, Parker RA. Designing and conducting survey research. A Comprehensive Guide. San Francisco: Jossey-Bass Sons, Inc.; 2014. 352 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2026 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.



Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).