Possibilities for diagnosis and prediction of preterm labor at the present stage

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Preterm birth is one of the main causes of perinatal morbidity and mortality, which does not tend to decrease in rate. The risk of death in premature babies is 25–35 times higher than that of full-term babies, and stillbirths are registered 8–13 times more often than in timely delivery. To date, there are no effective ways to prevent preterm birth. Therefore, the timeliness of therapy, which largely determines the outcome of pregnancy in general, depends on the effectiveness of assessing the likelihood of their development. At the International Federation of Gynecology and Obstetrics (FIGO) Congress (2018), preterm birth is identified as a problem that has not yet been solved at the current stage of science and technology development. The result of the unsolved problems is a situation wherein the modern world over the past 60 years there has been no decrease in the premature birth rate, which is 9.5% of births and annually ends with the birth of 15,000,000 premature babies. The study aimed to research modern methods of diagnosis and prediction of spontaneous preterm birth. An analytical method was used in the study: a detailed systematic analysis of modern domestic and foreign literature on the diagnosis and prognosis of preterm birth. We used eLibrary, Scopus, PubMed, MEDLINE, ScienceDirect, Cochrane Library bibliographic databases (until August 2020). The article deals with the diagnosis and prediction of preterm birth probability, which will optimize the management of patients from the risk group and, in the future, will reduce the rate of perinatal morbidity and mortality of premature babies. Despite a significant number of researches devoted to the study of possibilities for diagnosing and predicting spontaneous preterm birth, currently, there are no methods with absolute diagnostic value. Most -existing studies indicate that when assessing the probability of preterm birth, a comprehensive approach should be preferred taking into account the results of several main and additional methods.

About the authors

V A Mudrov

Chita State Medical Academy

Email: Zigaidar@yandex.ru
Russian Federation, Chita, Russia

A M Ziganshin

Bashkir State Medical University

Author for correspondence.
Email: Zigaidar@yandex.ru
Russian Federation, Ufa, Russia

A G Yashchuk

Bashkir State Medical University

Email: Zigaidar@yandex.ru
Russian Federation, Ufa, Russia

L A Dautova

Bashkir State Medical University

Email: Zigaidar@yandex.ru
Russian Federation, Ufa, Russia

R Sh Badranova

Republican clinical hospital named after G.G. Kuvatova

Email: Zigaidar@yandex.ru
Russian Federation, Ufa, Russia

References

  1. Aylamazyan E.K., Kuzminykh T.U. Controversial questions of preterm birth. Journal of obstetrics and women's diseases. 2013; 62 (4): 97–105. (In Russ.) doi: 10.17816/JOWD62497-105.
  2. Mamedova M.A., Bezhenar V.F. Predic­ting premature birth: current status and prospects. Aku­sherstvo i ginekologiya Sankt-Peterburga. 2018; (1): 31–34. (In Russ.)
  3. Clinical recommendations “Premature birth” (letter of the Ministry of Health of the Russian Fe­deration dated 17.12.2013 No. 15-4/10/2-9480). Available at: 17.12.2013. http://zdravorel.ru/arhiv/prejdevremennierodi_2013.pdf (access date: 19.08.2020). (In Russ.)
  4. Akusher­stvo. Uchebnik. (Obstetrics. Tutorial.) Ed. by V.E. Rad­zinsky, A.M. Fuks. Moscow: GEOTAR-Media. 2016; 1000. (In Russ.)
  5. Radzinskiy V.E. Akusherskaya agressiya v. 2.0. (Obstetric aggression.) Moscow: StatusPraesens. 2017; 688. (In Russ.)
  6. Cli­nical recommendations (Letter of the Ministry of Health No. 15-4/10/2-5803 of 02.10.2015 On sending clinical re­commendations (treatment protocol) “Organization of me­dical evacuation during preterm labor”). https://www.garant.ru/products/ipo/prime/doc/71137478/ (access date: 19.08.2020). (In Russ.)
  7. Parkington H.C., Stevenson J., Tonta M.A. et al. Diminished hERG K+ channel activity facilitates strong human labour contractions but is dysregulated in obese women. Nat. Commun. 2014; 5: 4108. doi: 10.1038/ncomms5108.
  8. Cobo T., Kacerovsky M., Jacobsson B. Risk factors for spontaneous preterm delivery. Int. J. Gynaecol. Obstet. 2020; 150 (1): 17–23. doi: 10.1002/ijgo.13184.
  9. Kacerovsky M., Lenco J., Musilova I. et al. Proteo­mic biomarkers for spontaneous preterm birth: a systematic review of the literature. Reprod. Sci. 2014; 21 (3): 283–295. doi: 10.1177/1933719113503415.
  10. Park J.Y., Romero R., Lee J. et al. An elevated amniotic fluid prostaglandin F2α concentration is associated with intra-amniotic inflammation/infection, and clinical and histologic chorioamnionitis, as well as impending preterm delivery in patients with preterm labor and intact membranes. J. Matern. Fetal. Neonatal. Med. 2016; 29 (16): 2563–2572. doi: 10.3109/14767058.2015.1094794.
  11. Hsu T.Y., Lin H., Lan K.C. et al. High interleukin-16 concentrations in the early second trimester amniotic ­fluid: an independent predictive marker for preterm birth. J. sMatern. Fetal. Neonatal. Med. 2013; 26 (3): 285–289. doi: 10.3109/14767058.2012.733750.
  12. Qu S.H., Shi C.Y., Chen Q. et al. Predictive value of cervical length by transvaginal sonography for preterm pregnancy during mid- and late-trimester of pregnancy. Zhonghua Fu Chan Ke Za Zhi. 2011; 46 (10): 748–752. PMID: 22321348.
  13. Dude A., Miller E.S. Change in cervical length across pregnancies and preterm delivery. Am. J. Perinatol. 2020; 37 (6): 598–602. doi: 10.1055/s-0039-1685444.
  14. Souka A.P., Papastefanou I., Papadopoulos G. et al. Cervical length in late second and third trimesters: a mixture model for predicting delivery. Ultrasound Obstet. Gynecol. 2015; 45 (3): 308–312. doi: 10.1002/uog.13407.
  15. Marsoosi V., Pirjani R., Jafarabadi M.A. et al. Cervical gland area as an ultrasound marker for prediction of preterm delivery: A cohort study. IJRM. 2017; 15 (11): 729–734. doi: 10.29252/ijrm.15.11.729.
  16. Volkov V.G., Chursina O.V. The modern possibilities of prediction of preterm birth. Vestnik novykh meditsinskikh tekhnologiy. 2020; (1): 30–35. (In Russ.) doi: 10.24411/2075-4094-2020-16593.
  17. Martynenko P.G., Volkov V.G. Prediction of preterm labor on the basis of the most significant risk factors. Akusherstvo i ginekologiya. 2012; (1): 103–107. (In Russ.)
  18. Astaf'eva O.V., Karyakina I.V., Aslanyan E.A., Micheeva N.V. The uterocervical angle as an additional ultrasound marker for prediction of preterm birth. Kubanskiy nauchnyy meditsinskiy vestnik. 2018; 25 (6): 26–31. (In Russ.) doi: 10.25207/1608-6228-2018-25-6-26-31.
  19. Kuznetsova N.B., Bushtyreva I.O., Zamanskaya T.A. et al. Method for predicting premature birth. Pa­tent RUS No. 2642597. Bulletin No. 3, issued at 25.01.2018. (In Russ.)
  20. Kosyakova O.V., Bespalova O.N. Prognostic possibilities of relaxin as a marker of preterm birth. Journal of obstetrics and women's diseases. 2018; 67 (2): 16–25. (In Russ.) doi: 10.17816/JOWD67216-25.
  21. Kurochka M.P., Zabozlaev F.G., Volokitina V.I., Stashke­vich V.V. A method for predicting spontaneous early preterm labor. Patent RUS No. 2729942. Bulletin No. 23, issued at 13.08.2020. (In Russ.)
  22. Makukhina T.B., Krivonosova N.V., Makukhina V.V., Pomortsev A.V. A method for predicting premature birth with intrauterine infection of the fetus and the absence of conotruncus defects. Patent RUS No. 2673152. Bulletin No. 33 issued at 22.11.2018. (In Russ.)
  23. Lachelin G.C., McGarrigle H.H., Seed P.T. et al. Low saliva progesterone concentrations are associated with spontaneous early preterm labour (before 34 weeks of gestation) in women at increased risk of preterm deli­very. BJOG. 2009; 116 (11): 1515–1519. doi: 10.1111/j.1471-0528.2009.02293.x.
  24. Maged A.M., Mohesen M., Elhalwagy A., Abdelhafiz A. Salivary progesterone and cervical length measurement as predictors of spontaneous preterm birth. J. Matern. Fetal. Neonatal. Med. 2015; 28 (10): 1147–1151. doi: 10.3109/14767058.2014.947474.
  25. Priya B., Mustafa M.D., Guleria K. et al. Salivary progesterone as a biochemical marker to predict ­early preterm birth in asymptomatic high-risk women. BJOG. 2013; 120 (8): 1003–1011. doi: 10.1111/1471-0528.12217.
  26. Abuelghar W.M., Ellaithy M.I., Swidan K.H. et al. Prediction of spontaneous preterm birth: salivary progesterone assay and transvaginal cervical length assessment after 24 weeks of gestation, another critical window of opportunity. J. Matern. Fetal. Neonatal. Med. 2019; 32 (22): 3847–3858. doi: 10.1080/14767058.2018.1482872.
  27. Nikolaeva A.S., Tanysheva G.A. Mo­dern aspects of prediction and prevention of preterm ­labor according to published data. Literature review. Nauka i zdravookhranenie. 2019; 21 (5): 23–36. (In Russ.)
  28. Hundley A.F., Onderdonk A.B., Greenberg J.A. ­Value of routine urine culture in the assessment of preterm labor. J. Reprod. Med. 2003; 48 (11): 853–857. PMID: 14686017.
  29. Chalermchockchareonkit A., Phoethong S., Ruan­gvutilert P., Thamkhantho M. Prevalence of positive culture of genitourinary tract microorganisms in pregnant women with presumptive preterm labor. J. Med. Assoc. Thai. 2013; 96 (9): 1111–1118. PMID: 24163985.
  30. Radkov O.V., Raskuratov Yu.V. A method for diagnosing threatening premature birth. Patent RUS No. 2207047. Bulletin No. 18, issued at 27.06.2003. (In Russ.)
  31. Malyshkina A.I., Nazarov S.B., Nazarova A.O. et al. A method for diagnosing threatening premature birth. Patent RUS No. 2630461. Bulletin No. 25, ­issued at 08.09.2017. (In Russ.)
  32. Hanna N., Kiefer D. A translational view of biomarkers in preterm labor. Am. J. Reprod. Immunol. 2012; 67 (4): 268–272. doi: 10.1111/j.1600-0897.2012.01112.x.
  33. Pogorelova T.N., Gunko V.O., Linde V.A. Proteo­mic markers for predicting preterm birth. Rossiyskiy vestnik akushera-ginekologa. 2016; 16 (2): 18–22. (In Russ.) doi: 10.17116/rosakush201616218-22.
  34. Romero R., Dey S.K., Fisher S.J. Preterm labor: one syndrome, many causes. Science. 2014; 345 (6198): 760–765. doi: 10.1126/science.1251816.
  35. Radkov O.V., Dadabaev V.K., Stolnikova I.I., Dosova S.Yu. A method for assessing the risk of preterm birth in women with recurrent miscarriage. Pa­tent RUS No. 2701109. Bulletin No. 27, issued at 24.09.2019. (In Russ.)
  36. Levkovich M.A., Krukner I.I., Avrutskaya V.V. et al. A method for predicting premature birth in women with the threat of termination of pregnancy. Patent RUS No. 2710244. Bulletin No. 36, issued at 25.12.2019. (In Russ.)
  37. Topping V., Romero R., Than N.G. et al. Interleukin-33 in the human placenta. J. Matern. Fetal. Neonatal. Med. 2013; 26 (4): 327–338. doi: 10.3109/14767058.2012.735724.
  38. Bondarenko K.R., Dobro­khotova Yu.E. A method for predicting premature birth at 24–34 weeks gestation. Patent RUS No. 2670672. Bulletin No. 30, issued at 24.10.2018. (In Russ.)
  39. Malyshkina A.I., Nazarov S.B., Nazarova A.O. et al. A me­thod for predicting the outcome of pregnancy in threa­tening preterm birth. Patent RUS No. 2630573. Bulletin No. 21, issued at 26.07.2017. (In Russ.)
  40. Sotnikova N.Yu., Borzova N.Yu., Kroshkina N.V., Chitava I.G. A method for predicting the outcome of pregnancy in threatening preterm birth. Patent RUS No. 2437097. Bulletin No. 35, issued at 20.12.2011. (In Russ.)
  41. Posiseeva L.V., Nazarov S.B., Nazarova A.O. et al. A me­thod for predicting the outcome of pregnancy in threatening preterm birth. Patent RUS No. 2272574. Bulletin No. 9, issued at 27.03.2006. (In Russ.)
  42. Posiseeva L.V., Nazarov S.B., Borzova N.Yu. et al. A method for diagnosing the threat of premature birth. Patent RUS No. 2267133. Bulletin No. 36, issued at 27.12.2005. (In Russ.)
  43. Borzova N.Yu., Sotnikova N.Yu., Kroshkina N.V., Lepilova I.B. A method for predicting threatened preterm birth in women with the threat of early miscarriage. Patent RUS No. 2344424. Bulletin No. 2, issued at 20.01.2009. (In Russ.)
  44. Malyshkina A.I., Sotnikova N.Yu., Kroshkina N.V., Salakhova L.M. A method for predicting the outcome of pregnancy in threatening preterm birth. Pa­tent RUS No. 2561594. Bulletin No. 24, issued at 27.08.2015. (In Russ.)
  45. Panova I.A., Sotnikova N.Yu., Kroshkina N.V., Pavlov A.V. A method for predicting the outcome of pregnancy with the threat of miscarriage of late terms. ­Patent RUS No. 2475752. Bulletin No. 5, issued at 20.02.2013. (In Russ.)
  46. Makarov O.V., Gankovskaya L.V., Bakhareva I.V. et al. A method for predicting premature birth and intrauterine infection of the fetus. Patent RUS No. 2486519. Bulletin No. 18, issued at 27.06.2013. (In Russ.)
  47. Tyutyunnik V.L., Vysokikh M.Yu., Volodina M.A. et al. Predicting preterm labor by determining catalase activity in peripheral blood plasma. ­Pa­tent RUS No. 2645093. Bulletin No. 5, issued at 15.02.2018. (In Russ.)
  48. Tyutyunnik V.L., Krasnyy A.M., Kan N.E. et al. A ­method for predicting premature birth by joint determination of extracellular DNA and interleukin-8 in peripheral blood plasma. Patent RUS No. 2682713. Bull. No. 9, from 21.03.2019. (In Russ.)
  49. Pluzhnikova T.A. Determination of pH as a method of prevention of preterm birth of infectious genesis in women with a history of miscarriage. Journal of obstetrics and women's diseases. 2015; 64 (1): 29–33. (In Russ.) doi: 10.17816/JOWD64129-33.
  50. Zegels G., Van Raemdonck G.A., Tjalma W.A., Van Ostade X.W. Use of cervicovaginal fluid for the identification of biomarkers for pathologies of the female genital tract. Proteome Sci. 2010; 8: 63. doi: 10.1186/1477-5956-8-63.
  51. Parry S., Leite R., Esplin M.S. et al. Cervicovaginal fluid proteomic analysis to identify potential biomarkers for preterm birth. Am. J. Obstet. Gynecol. 2020; 222 (5): 493.e1–493.e13. doi: 10.1016/j.ajog.2019.11.1252.
  52. Heng Y.J., Liong S., Permezel M. et al. Human cervicovaginal fluid biomarkers to predict term and preterm labor. Front. Physiol. 2015; 6: 151. doi: 10.3389/fphys.2015.00151.
  53. Dawes L.K., Prentice L.R., Huang Y., Groom K.M. The biomarkers for preterm birth study — A prospective observational study comparing the impact of vaginal biomarkers on clinical practice when used in women with symptoms of preterm labor. Acta Obstet. Gynecol. Scand. 2020; 99 (2): 249–258. doi: 10.1111/aogs.13729.
  54. Tyutyunnik V.L., Kan N.E., Nepsha O.S. et al. Prediction of preterm birth by the expression profile of innate immunity genes in the cells of the cervical canal. Patent RUS No. 2620153. Bulletin No. 15, issued at 23.05.2017. (In Russ.)
  55. Gankovskaya L.V., Makarov O.V., Kovalchuk L.V. et al. A method for predicting premature birth with urogenital infection. Patent RUS No. 2334233. Bulletin No. 26, issued at 20.09.08. (In Russ.)
  56. Makarov O.V., Gankovskaya L.V., Kovalchuk L.V. et al. A method for predicting premature birth of infectious genesis. Patent RUS No. 2408014. Bulletin No. 36, issued at 27.12.2010. (In Russ.)
  57. Ruder E.H., Hartman T.J., Goldman M.B. Impact of oxidative stress on female fertility. Curr. Opin. Obstet. Gynecol. 2009; 21 (3): 219–222. doi: 10.1097/gco.0b013e32832924ba.
  58. Boots A.B., Sanchez-Ramos L., Bowers D.M. et al. The short-term prediction of preterm birth: a syste­matic ­review and diagnostic metaanalysis. Am. J. ­Obstet. Gynecol. 2014; 210: 54.e1–54.e10. doi: 10.1016/j.ajog.2013.09.004.
  59. Ting H.S., Chin P.S., Yeo G.S., Kwek K. Comparison of bedside test kits for prediction of preterm delivery: phosphorylated insulin-like growth factor binding protein-1 (pIGFBP-1) test and fetal fibronectin test. Ann. Acad. Med. Singap. 2007; 36: 399–402. PMID: 17597963.
  60. Bhat G., Williams S.M., Saade G.R., Menon R. Biomarker interactions are better predictors of spontaneous preterm birth. Reprod. Sci. 2013; 21: 340–350. doi: 10.1177/1933719113497285.
  61. Khodzhaeva Z.S., Gorina K.A., Muminova K.T. et al. Amniotic fluid composition in pregnant women at high risk of preterm birth. Akusherstvo i ginekologiya. 2020; (8): 82–87. (In Russ.) doi: 10.18565/aig.2020.8.82-87.

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2021 Mudrov V.A., Ziganshin A.M., Yashchuk A.G., Dautova L.A., Badranova R.S.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».