Study of metabolic disorders in rats under exposure to hypobaric hypoxia and development of ­correction approaches by simultaneous action on different elements of pathogenesis

Cover Page

Cite item

Abstract

Aim. To study the indicators of metabolic changes in the blood and brain structures of rats after exposure to hypobaric hypoxia and to determine possible pharmacological approaches to correction these changes.

Methods. Hypobaric hypoxia in rats was simulated for 30 minutes in a pressure chamber, simulating an ascent to 8500 m. 3 and 24 hours after hypoxia, the activity of alanine aminotransferase, aspartic aminotransferases, alkaline phosphatase, creatine phosphokinase, lactate dehydrogenase, the content of glucose, total protein, triglycerides, cholesterol, β-lipoproteins, iron and uric acid were determined in the blood serum. The level of malondialdehyde in the hippocampus and frontal cortex was examined. The studies of the effect of 2-chloroethoxy-aryl-dimethyl-aminophenylphosphorylacetohydrazide (CAPAH) (1 mg/kg) and Рiracetam (100 mg/kg) after intraperitoneal injection 40 minutes before hypoxia and 1 hour after removing the rats from the pressure chamber were carried out. Statistical analysis was carried out using the GraphPad Prism software version 8.0.1, and the Student's t-test was used to test statistical significance.

Results. After 3 hours of hypobaric hypoxia, rats showed hyperenzymemia and dyslipidemia, the activity of almost all studied enzymes in the blood serum of rats was increased, the content of triglycerides was decreased, and the concentration of cholesterol was increased, the content of malondialdehyde in the hippocampus and frontal cortex was increased. In 24 hours after hypoxia, an increased level of creatine phosphokinase in the blood serum and malondialdehyde in the brain structures were noted. The use of 2-chloroethoxy-aryl-dimethyl-aminophenylphosphorylacetohydrazide prevented the development of hyperenzymemia, dyslipidemia and corrected the increased level of creatine phosphokinase after 24 hours; in both modes of administration, it reduced the serum level of malondialdehyde. Piracetam showed little effect only when administered prophylactically, preventing an increase in serum alkaline phosphatase activity and cholesterol levels.

Сonclusion. The revealed efficacy of 2-chloroethoxy-aryl-dimethyl-aminophenylphosphorylacetohydrazide and its previously studied complex mechanism of action suggest that 2-chloroethoxy-aryl-dimethyl-aminophenylphosphorylacetohydrazide is a potential drug for the prevention of hypoxic disorders and acceleration of adaptation to high-altitude hypoxia.

About the authors

I I Semina

Kazan State Medical University

Author for correspondence.
Email: seminai@mail.ru
Russian Federation, Kazan, Russia

A Z Baychurina

Kazan State Medical University

Email: seminai@mail.ru
Russian Federation, Kazan, Russia

E V Shilovskaya

Kazan State Medical University

Email: seminai@mail.ru
Russian Federation, Kazan, Russia

N E Tikhonova

Hospital for War Veterans

Email: seminai@mail.ru
Russian Federation, Kazan, Russia

D O Nikitin

Kazan State Medical University

Email: seminai@mail.ru
Russian Federation, Kazan, Russia

E V Begichev

Republican Clinical Hospital

Email: seminai@mail.ru
Russian Federation, Kazan, Russia

A G Ovchinnikova

Kazan State Medical University

Email: seminai@mail.ru
Russian Federation, Kazan, Russia

References

  1. Zarubina I.V. Modern view on pathogenesis of hypoxia and its pharmacological corection. Оbzory po klinicheskoy farmakologii i lekarstvennoy terapii. 2011; 9 (3): 31–48. (In Russ.)
  2. Chen P.S., Chiu W.T., Hsu P.L., Lin S.C., Peng I.C., Wang C.Y., Tsai S.J. Pathophysiological implications of hypoxia in human diseases. J. Biomed. Sci. 2020; 27 (1): 63–81. doi: 10.1186/s12929-020-00658-7.
  3. Woods D.R., O’Hara J.P., Boos C.J., Hodkinson P.D., Tsakirides C., Hill N.E., Jose D., Hawkins A., Phillipson K., Hazlerigg A., Arjomandkhah N., Gallagher L., Holdsworth D., Cooke M., Donald N., Green C., Mellor A. Markers of physiological stress during exercise under conditions of normoxia, normobaric hypoxia, HH, and genuine high altitude. Eur. J. Appl. Physiol. 2017; 117 (5): 893–900. doi: 10.1007/s00421-017-3573-5.
  4. Wang X.B., Hou Y., Li Q.Y., Li X., Wang W., Ai X., Kuang T., Chen X., Zhang Y., Zhang J., Hu Y., Meng X. Rhodiola crenulata attenuates apoptosis and mitochondrial energy metabolism disorder in rats with HH-induced brain injury by regulating the HIF-1α/microRNA 210/­ISCU1/2(COX10) signaling pathway. J. Ethnopharmacol. 2019; 241: 111801. doi: 10.1016/j.jep.2019.03.028.
  5. Hernández R., Blanco S., Peragón J., Pedrosa J.Á., Peinado M.Á. Hypobaric hypoxia and reoxygenation induce proteomic profile changes in the rat brain cortex. Neur. Mol. Med. 2013; 15 (1): 82–94. doi: 10.1007/s12017-012-8197-7.
  6. Li N., Li Q., Bai J., Chen K., Yang H., Wang W., Fan F., Zhang Y., Meng X., Kuang T., Fan G. The multiple organs insult and compensation mechanism in mice exposed to hypobaric hypoxia. Cell. Stres. Chaperon. 2020; 25: 779–791. doi: 10.1007/s12192-020-01117-w.
  7. Voronina T.A. Antioxidants/antihypoxants: the missing puzzle piece in effective pathogenetic therapy for COVID-19. Infektsionnye bolezni. 2020; 18 (2): 97–103. (In Russ.) doi: 10.20953/1729-9225-2020-2-97-102.
  8. Semina I.I., Tihonova N.A., Baichurina A.Z., Tarasova R.I., Pavlov V.A., Garaev R.S., Shilovskaya E.V. The neuroprotective effect of CAPAH, a representative of a new class of nootropics — non-anticholinesterase organophosphorus compounds. Vestnik RAMN. 1999; (3): 32–36. (In Russ.)
  9. Semina I.I., Baychurina A.Z. Development of new potential drugs with psychotropic activity among phosphorylacetohydrazides and other phosphorylated carboxylic acids derivatives - priority area of Kazan school of psychopharmacologists. Kazan Medical Journal. 2016; 97 (1): 148–155. (In Russ.) doi: 10.17750/KMJ2016-148.
  10. Losev A.S., Alybaev A.M., Karpova T.D. Vosstanovlenie posle ostroj gipobaricheskoj gipoksii kak metod izucheniya antigipoksicheskoj aktivnosti himicheskih soe­dinenij. In: Farmakologicheskaya regulyaciya sosto­yanij dezadaptacii. (Pharmacological regulation of maladjustment states.) M.: AMN SSSR. 1986; 54–67. (In Russ.)
  11. Stal'naya I.D., Garshvili T.G. Opredelenie malonovogo dial'degida (MDA) v biohimii. M.: Medicina. 1977; 66–68. (In Russ.)
  12. Liu P., Zou D., Chen K., Zhou Q., Gao Y., Huang Y., Zhu J., Zhang Q., Mi M. dihydromyricetin improves hypobaric hypoxia-induced memory impairment via modulation of SIRT3 signaling. Mol. Neurobiol. 2016; 53: 7200–7212. doi: 10.1007/s12035-017-0399-4.
  13. Bärtsch P., Swenson E.R. Acute high-altitude illnesses. N. Engl. J. Med. 2013; 368 (24): 2294–2302. doi: 10.1056/NEJMcp1214870.
  14. Xi D., Zhang R., Ye S., Liu F., Jiang P., Yu X., Xu J., Ma L., Cao H., Shen Y., Lin F., Wang Z., Li C. Alterations of human plasma proteome profile on adaptation to high-­altitude. J. Proteome Res. 2019; 18 (5): 2021–2031. doi: 10.1021/acs.jproteome.8b00911.
  15. Karkishchenko N.N., Karkishchenko V.N., Shustov E.B., Kapanadze G.D., Revyakin A.O., Semenov H.H., Bolotova V.C., Dulya M.S. Teoreticheskie osnovy farmakologicheskih effektov antigipoksantov. In: Biomedicinskoe (doklinicheskoe) izuchenie antigipoksi­cheskoj aktivnosti lekarstvennyh sredstv. (Biomedical (preclinical) study of the antihypoxic activity of drugs.) M.: NCBT FMBA. 2017; 97 p. (In Russ.)
  16. Gangwar A., Sharma M., Singh K., Patyal A., Bhaumik G., Bhargava K., Sethy N.K. Intermittent normobaric hypoxia facilitates high altitude acclimatization by curtai­ling hypoxia-induced inflammation and dyslipidemia. Eur. J. Physiol. 2019; 471 (7): 949–959. doi: 10.1007/s00424-019-02273-4.
  17. Mylonis I., Simos G., Paraskeva E. Hypoxia-indu­cible factors and the regulation of lipid Metab. Cells. 2019; 8 (3): 214–240. doi: 10.3390/cells8030214.
  18. Hou Y., Wang X., Chen X., Zhang J., Ai X., ­Liang Y., Yu Y., Zhang Y., Meng X., Kuang T., Hu Y. Establishment and evaluation of a simulated high-altitude hypoxic brain injury model in SD rats. Mol. Med. Rep. 2019; 19: 2758–2766. doi: 10.3892/mmr.2019.9939.
  19. Bong S.M., Moon J.H., Nam K.H., Lee K.S., Chi Y.M., Hwang K.Y. Structural studies of human brain-type creatine kinase complexed with the ADP-Mg2+-NO3 — creatine transition-state analogue complex. FEBS lett. 2008; 582 (28): 3959–3965. doi: 10.1016/j.febslet.2008.10.039.
  20. Semina I.G., Semina I.I., Azancheev N.M., Shilovskaya E.V., Tarasova R.I., Pavlov V.A., Il'yasov A.V., Fedotov V.D. On the issue and membrane mechanisms of action of nootropic drugs. Biol. Membr. 2001; 18 (5): 363–369. (In Russ.)
  21. Li Y., Zhang Y., Zhang Y. Research advances in pathogenesis and prophylactic measures of acute high altitude illness. Resp. Med. 2018; 145: 145–152. doi: 10.1016/­j.rmed.2018.11.004.
  22. Singh A., Kukreti R., Saso L., Kukreti S. Oxidative stress: a key modulator in neurodegenerative disea­ses. Mole­cules. 2019; 24 (8): 1583–1603. doi: 10.3390/molecules24081583.
  23. Vostrikov V.V. Place of piracetam in the modern practice of medicine. Оbzory po klinicheskoy farmakologii i lekarstvennoy terapii. 2017; 15 (1): 14–25. (In Russ.) doi: 10.17816/RCF15114-25.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1. Активность ферментов в сыворотке крови крыс через 3 ч после воздействия гипобарической гипоксии (ГГ) при введении 2-хлорэтокси-арил-диметил-аминофенилфосфорил-ацетогидразида (КАПАХ; 1 мг/кг внутрибрюшинно) и пирацетама (100 мг/кг внутрибрюшинно) за 40 мин до помещения крысы в барокамеру. По оси абсцисс — названия ферментов; по оси ординат — активность ферментов (%) по отношению к контрольным значениям, принятым за 100%. Количество крыс в каждой группе n=10. АЛТ — аланинаминотрансфераза; АСТ — аспартатаминотрансфераза; ЛДГ — лактатдегидрогеназа; ЩФ — щелочная фосфатаза; КФК — креатинфосфокиназа; *разница достоверна по отношению к контролю; **разница достоверна по отношению к ГГ.

Download (70KB)

© 2021 Eco-Vector





Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».