Современные представления о тактике лечения пациентов с несквозными макулярными разрывами: наблюдать или оперировать?

Обложка

Цитировать

Полный текст

Аннотация

В данном обзоре рассмотрены мнения различных авторов на проблему несквозных макулярных разрывов. В настоящее время существует три различных подхода к ведению больных с данной патологией. Динамическое наблюдение позволяет оценить степень их прогрессирования, определить те или иные анатомические показатели, влияющие на функциональное состояние сетчатки и зрительные функции. Фармакологический витреолизис направлен на ликвидацию вертикальных и тангенциальных тракций наименее инвазивным способом. Радикально же решить проблему возможно при помощи хирургического лечения — задней витрэктомии, однако этот способ сопряжён с определёнными рисками хирургического вмешательства и не всегда приводит к улучшению зрения. Как правило, его рекомендуют пациентам с выраженным снижением остроты зрения. Показания к хирургическому лечению пациентов с высоким зрением на сегодняшний день неоднозначны.

Об авторах

Константин Сергеевич Жоголев

ФГАУ «НМИЦ «МНТК «Микрохирургия глаза» им. академика С.Н. Фёдорова» Минздрава России

Автор, ответственный за переписку.
Email: ksjogolev@rambler.ru
ORCID iD: 0000-0002-4547-4117

врач-офтальмолог 7-го офтальмологического отделения, офтальмохирург отделения витреоретинальной хирургии

Россия, Санкт-Петербург

Ярослав Владимирович Байбородов

ФГАУ «НМИЦ «МНТК «Микрохирургия глаза» им. академика С.Н. Фёдорова» Минздрава России; ФГБОУ ВО «Северо-Западный государственный медицинский университет им. И.И. Мечникова» Минздрава России

Email: yaroslavvitsug@rambler.ru

канд. мед. наук, заведующий 7-м офтальмологического отделением, офтальмохирург отделения витреоретинальной хирургии

Россия, Санкт-Петербург

Список литературы

  1. Gass JD. Lamellar macular hole: a complication of cystoid macular edema after cataract extraction: a clinicopathologic case report. Trans Am Ophthalmol Soc. 1975;73:231-250.
  2. Allen AW, Jr, Gass JD. Contraction of a perifoveal epiretinal membrane simulating a macular hole. Am J Ophthalmol. 1976;82(5):684-691. https://doi.org/10.1016/0002-9394(76)90002-7.
  3. Haouchine B, Massin P, Tadayoni R, et al. Diagnosis of macular pseudoholes and lamellar macular holes by optical coherence tomography. Am J Ophthalmol. 2004;138(5):732-739. https://doi.org/10.1016/j.ajo.2004.06.088.
  4. Балашевич Л.И., Байбородов Я.В., Жоголев К.С. Хирургическое лечение патологии витреомакулярного интерфейса. Обзор литературы в вопросах и ответах // Офтальмохирургия. – 2015. – № 2. – С. 80–86. [Balashevich LI, Bayborodov YV, Zhogolev KS. Surgical treatment of the vitreo-macular interface pathology. Review of the foreign literature in questions and answers. Ophthalmosurgery. 2015;(2):80-86. (In Russ.)]
  5. Байбородов Я.В. Концепция анатомической реконструкции фовеолы в хирургическом лечении сквозных макулярных разрывов с использованием интраоперационного ОКТ-контроля // Офтальмологические ведомости. – 2017. – Т. 10. – № 3. – С. 12–17. [Bayborodov YV. The concept of the foveola anatomical reconstruction in the surgical treatment of full-thickness macular tears using intraoperative OCT control. Ophthalmology journal. 2017;10(3):12-17. (In Russ.)]. https://doi.org/10.17816/OV10312-17.
  6. Байбородов Я.В., Жоголев К.С., Хижняк И.В. Темпы восстановления остроты зрения после хирургического лечения макулярных разрывов с интраоперационным применением оптической когерентной томографии и различных методов визуализации внутренней пограничной мембраны // Вестник офтальмологии. – 2017. – Т. 133. – № 6. – С. 90–98. [Bayborodov YV, Zhogolev KS, Khizhnyak IV. Rate of visual recovery after macular hole surgery with intraoperative optical coherence tomography and visualization of the internal limiting membrane. Annals of ophthalmology. 2017;133(6):90. (In Russ).]. https://doi.org/10.17116/oftalma2017133690-98.
  7. Шпак А.А., Шкворченко Д.О., Шарафетдинов И.Х., Юханова О.А. Прогнозирование результатов хирургического лечения идиопатического макулярного разрыва // Офтальмохирургия. – 2015. – № 2. – С. 55–61. [Shpak AA, Shkvorchenko DO, Sharafetdinov IKh, Yukhanova OA. Predicting the results of surgical treatment of idiopathic macular hole. Ophthalmosurgery. 2015;(2):55-61. (In Russ.)]. https://doi.org/10.18240/ijo.2016.02.13.
  8. Шпак А.А., Шкворченко Д.О., Шарафетдинов И.Х., Юханова О.А. Функциональные результаты хирургического лечения идиопатических макулярных разрывов // Вестник офтальмологии. – 2016. – Т. 132. – № 2. – С. 14–20. [Shpak AA, Shkvorchenko DO, Sharafetdinov IKh, Yukhanova OA. Functional outcomes of idiopathic macular hole surgeries. Annals of Ophthalmology. 2016;132(2):14-20. (In Russ.)]. https://doi.org/10.17116/oftalma2016132214-20.
  9. Юханова О.А. Прогнозирование исходов и оценка результатов лечения идиопатического макулярного разрыва: Автореф. диc. … канд. мед. наук. – М., 2015. [Yukhanova OA. Prognozirovanie iskhodov i otsenka rezul’tatov lecheniya idiopaticheskogo makulyarnogo razryva. [dissertation] Moscow; 2015. (In Russ.)]
  10. Балашевич Л.И., Байбородов Я.В., Жоголев К.С. Патология витреомакулярного интерфейса. Обзор литературы в вопросах и ответах // Офтальмохирургия. – 2014. – № 4. – С. 109–114. [Balashevich LI, Bayborodov YV, Zhogolev KS. Vitreomacular interface pathology. Review of foreign literature in questions and answers. Ophthalmosurgery. 2014;(4):109-114. (In Russ.)]
  11. Shiraga F, Takasu I, Fukuda K, et al. Modified vitreous surgery for symptomatic lamellar macular hole with epiretinal membrane containing macular pigment. Retina. 2013;33(6):1263-1269. https://doi.org/10.1097/IAE.0b013e31828bcb61.
  12. Lee SJ, Jang SY, Moon D, et al. Long-term surgical outcomes after vitrectomy for symptomatic lamellar macular holes. Retina. 2012;32(9):1743-1748. https://doi.org/10.1097/IAE.0b013e3182551c3c.
  13. Sun JP, Chen SN, Chuang CC, et al. Surgical treatment of lamellar macular hole secondary to epiretinal membrane. Graefes Arch Clin Exp Ophthalmol. 2013;251(12):2681-2688. https://doi.org/10.1007/s00417-013-2364-x.
  14. Casparis H, Bovey EH. Surgical treatment of lamellar macular hole associated with epimacular membrane. Retina. 2011;31(9):1783-1790. https://doi.org/10.1097/IAE.0b013e31820a6818.
  15. Bottoni F, Deiro AP, Giani A, et al. The natural history of lamellar macular holes: a spectral domain optical coherence tomography study. Graefes Arch Clin Exp Ophthalmol. 2013;251(2):467-475. https://doi.org/10.1007/s00417-012-2044-2.
  16. Michalewski J, Michalewska Z, Dziegielewski K, Nawrocki J. Evolution from macular pseudohole to lamellar macular hole –spectral domain OCT study. Graefes Arch Clin Exp Ophthalmol. 2011;249(2):175-178. https://doi.org/10.1007/s00417-010-1463-1.
  17. Tanaka Y, Shimada N, Moriyama M, et al. Natural history of lamellar macular holes in highly myopic eyes. Am J Ophthalmol. 2011;152(1):96-99.e91. https://doi.org/10.1016/j.ajo.2011.01.021.
  18. dell’Omo R, Virgili G, Bottoni F, et al. Lamellar macular holes in the eyes with pathological myopia. Graefes Arch Clin Exp Ophthalmol. 2018;256(7):1281-1290. https://doi.org/10.1007/s00417-018-3995-8.
  19. Zampedri E, Romanelli F, Semeraro F, et al. Spectral-domain optical coherence tomography findings in idiopathic lamellar macular hole. Graefes Arch Clin Exp Ophthalmol. 2017;255(4):699-707. https://doi.org/10.1007/s00417-016-3545-1.
  20. Theodossiadis PG, Grigoropoulos VG, Emfietzoglou I, et al. Evolution of lamellar macular hole studied by optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2009;247(1):13-20. https://doi.org/10.1007/s00417-008-0927-z.
  21. Reibaldi M, Parravano M, Varano M, et al. Foveal microstructure and functional parameters in lamellar macular hole. Am J Ophthalmol. 2012;154(6):974-980 e971. https://doi.org/10.1016/j.ajo.2012.06.008.
  22. Clamp MF, Wilkes G, Leis LS, et al. En face spectral domain optical coherence tomography analysis of lamellar macular holes. Retina. 2014;34(7):1360-1366. https://doi.org/10.1097/IAE.0000000000000115.
  23. Michalewska Z, Michalewski J, Odrobina D, Nawrocki J. Non-full-thickness macular holes reassessed with spectral domain optical coherence tomography. Retina. 2012;32(5):922-929. https://doi.org/10.1097/IAE.0b013e318227a9ef.
  24. Parravano M, Oddone F, Boccassini B, et al. Functional and structural assessment of lamellar macular holes. Br J Ophthalmol. 2013;97(3):291-296. https://doi.org/10.1136/bjophthalmol-2011-301219.
  25. Toyama T, Roggia MF, Yamaguchi T, et al. The extent of stretched lamellar cleavage and visual acuity in macular pseudoholes. Br J Ophthalmol. 2016;100(9):1227-1231. https://doi.org/10.1136/bjophthalmol-2015-307709.
  26. Gaudric A, Aloulou Y, Tadayoni R, Massin P. Macular pseudoholes with lamellar cleavage of their edge remain pseudoholes. Am J Ophthalmol. 2013;155(4):733-742,742.e731-734. https://doi.org/10.1016/j.ajo.2012.10.021.
  27. Gandorfer A, Rohleder M, Sethi C, et al. Posterior vitreous detachment induced by microplasmin. Invest Ophthalmol Vis Sci. 2004;45(2):641. https://doi.org/10.1167/iovs.03-0930.
  28. Sakuma T, Tanaka M, Mizota A, et al. Safety of in vivo pharmacologic vitreolysis with recombinant microplasmin in rabbit eyes. Invest Ophthalmol Vis Sci. 2005;46(9):3295-3299. https://doi.org/10.1167/iovs.04-1517.
  29. de Smet MD, Valmaggia C, Zarranz-Ventura J, Willekens B. Microplasmin: ex vivo characterization of its activity in porcine vitreous. Invest Ophthalmol Vis Sci. 2009;50(2):814-819. https://doi.org/10.1167/iovs.08-2185.
  30. de Smet MD, Gandorfer A, Stalmans P, et al. Microplasmin intravitreal administration in patients with vitreomacular traction scheduled for vitrectomy: the MIVI I trial. Ophthalmology. 2009;116(7):1349-1355,1355.e1341-1342. https://doi.org/10.1016/j.ophtha.2009.03.051.
  31. Шкворченко Д.О., Шарафетдинов И.Х., Шацких А.В., и др. Экспериментальное обоснование использования миниплазмина с целью индукции задней отслойки стекловидного тела на кроличьих глазах in vivo // Сборник тезисов X Всероссийской научно-практической конференции с международным участием «Фёдоровские чтения»; Москва, 20–22 июня 2012 г. – М., 2012. – С. 152. [Shkvorchenko DO, Sharafetdinov IKh, Shatskikh AV, et al. Eksperimental’noe obosnovanie ispol’zovaniya miniplazmina s tsel’yu induktsii zadney otsloyki steklovidnogo tela na krolich’ikh glazakh in vivo. In: Proceedings of the X all-Russian scientific-practical conference with international participation «Fedorovskie chteniya»; Moscow, 20-22 Jun 2012. Moscow; 2012. P. 152. (In Russ.)]
  32. Тахчиди Х.П., Шкворченко Д.О., Шарафетдинов И.Х., Норман К.С. Роль витреоретинального соединения в патологии заднего отрезка глаза и способы отделения задних гиалоидных слоёв стекловидного тела // Офтальмохирургия. – 2011. – № 3. – С. 84–88. [Takhchidi KhP, Shkvorchenko DO, Sharafetdinov IKh, Norman KS. Role of vitreoretinal compound in pathology of posterior eye segment and methods of posterior hyaloids layers separation. Ophthalmosurgery. 2011;(3):84-88. (In Russ.)]
  33. Норман К.С. Экспериментальное обоснование использования миниплазмина с целью индукции задней отслойки стекловидного тела: Автореф. дис. … канд. мед. наук. – М., 2012. [Norman KS. Eksperimental’noe obosnovanie ispol’zovaniya miniplazmina s tsel’yu induktsii zadney otsloyki steklovidnogo tela. [dissertation] Moscow; 2012. (In Russ.)]
  34. Benz MS, Packo KH, Gonzalez V, et al. A placebo-controlled trial of microplasmin intravitreous injection to facilitate posterior vitreous detachment before vitrectomy. Ophthalmology. 2010;117(4):791-797. https://doi.org/10.1016/j.ophtha.2009.11.005.
  35. Schneider EW, Johnson MW. Emerging nonsurgical methods for the treatment of vitreomacular adhesion: a review. Clin Ophthalmol. 2011;5:1151-1165. https://doi.org/10.2147/OPTH.S 14840.
  36. Stalmans P, Delaey C, de Smet MD, et al. Intravitreal injection of microplasmin for treatment of vitreomacular adhesion: results of a prospective, randomized, sham-controlled phase II trial (the MIVI–IIT trial). Retina. 2010;30(7):1122-1127. https://doi.org/10.1097/IAE.0b013e3181e0970a.
  37. Kuppermann BD. Ocriplasmin for pharmacologic vitreolysis. Retina. 2012;32 Suppl 2: S 225-228; discussion S 228-231. https://doi.org/10.1097/IAE.0b013e31825bc593.
  38. Лыскин П.В., Захаров В.Д., Шпак А.А., Згоба М.И. Микроинвазивное лечение витреомакулярной тракции // Современные технологии в офтальмологии. – 2018. – № 1. – С. 236–237. [Lyskin PV, Zakharov VD, Shpak AA, Zgoba MI. Mikroinvazivnoe lechenie vitreomakulyarnoy traktsii. Sovremennye tekhnologii v oftal’mologii. 2018;(1):236-237. (In Russ.)]
  39. Chod RB, Goodrich C, Saxena S, Akduman L. Lamellar macular hole after intravitreal ocriplasmin injection. BMJ Case Rep. 2015;2015. https://doi.org/10.1136/bcr-2014-207810.
  40. Massin P, Paques M, Masri H, et al. Visual outcome of surgery for epiretinal membranes with macular pseudoholes. Ophthalmology. 1999;106(3):580-585. https://doi.org/10.1016/S 0161-6420(99)90119-7.
  41. Hirakawa M, Uemura A, Nakano T, Sakamoto T. Pars plana vitrectomy with gas tamponade for lamellar macular holes. Am J Ophthalmol. 2005;140(6):1154-1155. https://doi.org/10.1016/j.ajo.2005.07.022.
  42. Brooks HL. Macular hole surgery with and without internal limiting membrane peeling. Ophthalmology. 2000;107(10):1939-1948. https://doi.org/10.1016/s0161-6420(00)00331-6.
  43. Haritoglou C, Gass CA, Schaumberger M, et al. Long-term follow-up after macular hole surgery with internal limiting membrane peeling. Am J Ophthalmol. 2002;134(5):661-666. https://doi.org/10.1016/s0002-9394(02)01751-8.
  44. Mester V, Kuhn F. Internal limiting membrane removal in the management of full-thickness macular holes. Am J Ophthalmol. 2000;129(6):769-777. https://doi.org/10.1016/s0002-9394(00)00358-5.
  45. Smiddy WE, Feuer W, Cordahi G. Internal limiting membrane peeling in macular hole surgery. Ophthalmology. 2001;108(8):1471-1476. https://doi.org/10.1016/s0161-6420(00)00645-x.
  46. Алпатов С.А. Хирургическое лечение сквозных макулярных разрывов большого диаметра // Офтальмохирургия. – 2005. – № 1. – С. 8–12. [Alpatov SA. Khirurgicheskoe lechenie skvoznykh makulyarnykh razryvov bol’shogo diametra. Ophthalmosurgery. 2005;(1):8-12. (In Russ.)]
  47. Williamson TH. Vitreoretinal Surgery. 2nd ed. Berlin, Heidelberg: Springer-Verlag; 2013. 429 p.
  48. geuderasiapacific.sg [Internet]. Brilliant peel (Geuder) official site. [cited 01.11.2018]. Available from: http://www.geuderasiapacific.sg/media/raw/RZ_Flyer_BrilliantPeel_GB_022014.pdf
  49. Pang CE, Spaide RF, Freund KB. Epiretinal proliferation seen in association with lamellar macular holes: a distinct clinical entity. Retina. 2014;34(8):1513-1523. https://doi.org/10.1097/IAE.0000000000000163.
  50. Papadopoulou D, Donati G, Mangioris G, Pournaras CJ. Anatomical and functional results of lamellar macular holes surgery. Klin Monbl Augenheilkd. 2016;233(4):441-443. https://doi.org/10.1055/s-0041-111822.
  51. Lai TT, Chen SN, Yang CM. Epiretinal proliferation in lamellar macular holes and full-thickness macular holes: clinical and surgical findings. Graefes Arch Clin Exp Ophthalmol. 2016;254(4):629-638. https://doi.org/10.1007/s00417-015-3133-9.
  52. Lai TT, Yang CM. Lamellar hole-associated epiretinal proliferation in lamellar macular hole and full-thickness macular hole in high myopia. Retina. 2018;38(7):1316-1323. https://doi.org/10.1097/IAE.0000000000001708.
  53. Ko J, Kim GA, Lee SC, et al. Surgical outcomes of lamellar macular holes with and without lamellar hole-associated epiretinal proliferation. Acta Ophthalmol. 2017;95(3):e221-e226. https://doi.org/10.1111/aos.13245.
  54. Hirota K, Itoh Y, Rii T, et al. Correlation between foveal interdigitation zone band defect and visual acuity after surgery for macular pseudohole. Retina. 2015;35(5):908-914. https://doi.org/10.1097/IAE.0000000000000414.
  55. Шкворченко Д.О., Шпак А.А., Миронова Т.С., и др. Хирургическое лечение эпиретинального фиброза, осложнённого псевдоразрывом // Современные технологии в офтальмологии. – 2015. – № 1. – С. 135–136. [Shkvorchenko DO, Shpak AA, Mironova TS, et al. Khirurgicheskoe lechenie epiretinal’nogo fibroza, oslozhnennogo psevdorazryvom. Sovremennye tekhnologii v oftal’mologii. 2015;(1):135-136. (In Russ.)]
  56. Witkin AJ, Ko TH, Fujimoto JG, et al. Redefining lamellar holes and the vitreomacular interface: an ultrahigh-resolution optical coherence tomography study. Ophthalmology. 2006;113(3):388-397. https://doi.org/10.1016/j.ophtha.2005.10.047.
  57. Dutra Medeiros M, Alkabes M, Nucci P, Branco J. Full-thickness macular hole after lamellar macular hole surgery: a case report. Eur J Ophthalmol. 2015;25(1):73-76. https://doi.org/10.5301/ejo.5000490.
  58. Байбородов Я.В., Жоголев К.С., Балашевич Л.И., и др. Ретроспективный анализ результатов микроинвазивной задней витрэктомии в хирургическом лечении несквозных макулярных разрывов // Офтальмология. – 2018. – Т. 15. – № 2S. – С. 239–245. [Bayborodov YV, Zhogolev KS, Balashevich LI, et al. A retrospective analysis of the results of microinvasive posterior vitrectomy in the surgical treatment of non-full thickness macular holes. Ophthalmology. 2018;15(2S);239-245. (In Russ.)]. https://doi.org/10.18008/1816-5095-2018-2s-239-245.
  59. Педанова Е.К. Микропериметрия в оценке функционального состояния и комплексном прогнозировании результатов хирургического лечения пациентов с идиопатическим макулярным разрывом: Автореф. дис. … канд. мед. наук. – М., 2009. [Pedanova EK. Mikroperimetriya v otsenke funktsional’nogo sostoyaniya i kompleksnom prognozirovanii rezul’tatov khirurgicheskogo lecheniya patsientov s idiopaticheskim makulyarnym razryvom. [dissertation] Moscow; 2009. (In Russ.)]

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Жоголев К.С., Байбородов Я.В., 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».