Features of visual field changes in patients with degenerative optic neuropathies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Degenerative optic neuropathies are one of the leading causes of irreversible blindness. The most accessible and effective methods of their early diagnosis are standard and non-standard perimetry.

AIM: The aim of this study is to identify the features of visual field changes in patients with degenerative optic neuropathies.

MATERIALS AND METHODS: The study involved 56 patients (97 eyes) with degenerative optic neuropathies, divided into 3 groups, and the control group consisted of 60 healthy individuals (60 eyes). In addition to the standard ophthalmological examination, all subjects underwent Humphrey visual field testing and Frequency Doubling Technology (FDT) perimetry in the author’s modification.

RESULTS: In patients with degenerative optic neuropathies, the sensitivity level of both FDT perimetry strategies turned out to be significantly higher in the detection of primary open-angle glaucoma than in that of multiple sclerosis, and the specificity level was 2 times higher than that of the Humphrey visual field testing. The data of the variance analysis showed that the results of FDT perimetry reliably separate patients with degenerative optic neuropathies from healthy individuals, but it is not always possible to determine the type of optic neuropathy.

CONCLUSIONS: Both threshold strategies of FDT perimetry are more effective in detecting optic neuropathy in primary open-angle glaucoma than in multiple sclerosis in terms of sensitivity. They have higher specificity than Humphrey perimetry, which indicates the advantage of FDT perimetry in separation between healthy people and patients with degenerative optic neuropathies, and not only of glaucomatous nature. The moderate and reliable correlation between the MD indices of all three strategies of perimetry indicates the expediency of their integrated use for early diagnosis of primary open-angle glaucoma.

About the authors

Irina L. Simakova

Kirov Military Medical Academy

Author for correspondence.
Email: irina.l.simakova@gmail.com
ORCID iD: 0000-0001-8389-0421
SPIN-code: 3422-5512

MD, Dr. Sci. (Medicine), Assistant Professor

Russian Federation, 21 Botkinskaya st., Saint Petersburg, 199044

Alexei N. Kulikov

Kirov Military Medical Academy

Email: alexey.kulikov@mail.ru
ORCID iD: 0000-0002-5274-6993
SPIN-code: 6440-7706

MD, Dr. Sci. (Medicine), Professor

Russian Federation, 21 Botkinskaya st., Saint Petersburg, 199044

Irina A. Tikhonovskaya

Kirov Military Medical Academy

Email: irenpetrova@yandex.ru
ORCID iD: 0000-0002-7518-8437

MD, Cand. Sci. (Medicine)

Russian Federation, 21 Botkinskaya st., Saint Petersburg, 199044

References

  1. Sheremet NL, Andreeva NA, Meshkov AD, et al. Etiological structure of non-glaucoma optic neuropathies. Siberian Scientific Medical Journal. 2018;38(5):25–31. EDN: YLFZCX doi: 10.15372/SSMJ20180504
  2. Sheremet NL, Eliseeva DD, Bryukhov VV, et al. Optic neuropathies as an interdisciplinary subject of research. The Russan annals of ophthalmology. 2023;139(3–2):63–70. EDN: SDICYI doi: 10.17116/oftalma202313903263
  3. Kachan TV, Marchenko LN, Dalidovich AA. Diagnosis of optic neuropathy in patients with multiple sclerosis by means of scanning laser polarimetry and optical coherence tomography. Ophthalmology. Eastern Europe. 2015;((1)24):51–58. EDN: TLGZAD
  4. Ulusoy M.O, Horasanlı B., Işık-Ulusoy S. Optical coherence tomography angiography findings of multiple sclerosis with or without optic neuritis. Neurol Res. 2020;42(4):319–326. doi: 10.1080/01616412.2020.1726585
  5. Lo C, Vuong LN, Micieli JA. Recent advances and future directions on the use of optical coherence tomography in neuro-ophthalmology. Taiwan J Ophthalmol. 2021;11(1):3–15. doi: 10.4103/tjo.tjo_76_20
  6. Barysau AV, Marchankо LN, Kachan TV. Features of degenerative optic neuropathies in patients with primary open-angle glaucoma and multiple sclerosis. Medical journal. 2021;1:55–59. EDN: OSCLLG
  7. Ioileva EE, Krivosheeva MS. Microperimetry is a new method for diagnosing central scotomas in optic neuritis due to multiple sclerosis. Practical medicine. 2016;6(98):52–56. EDN: WZWJSX
  8. Ioyleva EE, Krivosheva MS. Microperimetry by optical neuritis due to multiple sclerosis. Fyodorov Journal of Ophthalmic Surgery. 2016;3:33–38. EDN: WTCZSD doi: 10.25276/0235-4160-2016-3-33-38
  9. Schmidt TE, Yakhno NN. Multiple sclerosis. Moscow: MEDpress-inform; 2010. 272 p. (In Russ.)
  10. Maslova NN, Andreeva EA. Neuroophthalmologic examination in early diagnostics of multiple sclerosis. Bulletin of the Smolensk State Medical Academy. 2013;12(2):44–52. EDN: RBCQTJ
  11. RRoodhooft JM. Ocular problems in early stages of multiple sclerosis. Bull Soc Belge Ophtalmol. 2009;(313):65–68.
  12. Kovalenko AV, Bisaga GN, Kovalenko IYu. Visual analyser in multiple sclerosis, clinic and diagnosis. Bulletin of the Russian Military Medical Academy. 2012;(2(38)):128–135. (In Russ.)
  13. Artes PH, Hutchison DM, Nicolela MT, et al. Threshold and variability properties of matrix frequency-doubling technology and standard automated perimetry in glaucoma. Investig Ophthalmol Vis Sci. 2005;46(7):2451–2457. doi: 10.1167/iovs.05-0135
  14. Leeprechanon N, Giangiacomo A, Fontana H, et al. Frequency-doubling perimetry: comparison with standard automated perimetry to detect glaucoma. Am J Ophthalmol. 2007;143(2):263–271. doi: 10.1016/j.ajo.2006.10.033
  15. Simakova IL, Volkov VV, Boyko EV, et al. Creation of perimetry method with doubled spatial frequency abroad and in Russia. Glaucoma. 2009;8(2):5–21. (In Russ.)
  16. Simakova IL, Volkov VV, Boiko EV. The results of developed method of frequency-doubling technology (FDT) perimetry in comparision with the results of the original FDT-perimetry. Glauсoma. 2010;(1):5–11. EDN: MBRFWH
  17. Medeiros FA, Sample PA, Zangwill LM, et al. A statistical approach to the evaluation of covariate effects on the receiver operating characteristic curves of diagnostic tests in glaucoma. Investig. Ophthalmol. Vis. Sci. 2006;47(6):2520–2527. doi: 10.1167/iovs.05-1441
  18. Terry AL, Paulose-Ram R, Tilert TJ, et al. The methodology of visual field testing with frequency doubling technology in the National Health and Nutrition Examination Survey, 2005–2006. Ophthalmic Epidemiology. 2010;17(6):411–421. doi: 10.3109/09286586.2010.528575
  19. Weinreb R, Greve E, eds. Progression of Glaucoma: the 8th consensus report of the world glaucoma association. Amsterdam, the Netherlands: Kugler Publications; 2011. 170 p.
  20. Zeppieri M, Johnson CA. Frequency doubling technology (FDT) perimetry. Imaging and perimetry society. 2013.
  21. Liu S, Yu M, Weinreb RN, et al. Frequency-doublingtechnology perimetry for detection of the development of visual field defects in glaucoma suspect eyes. JAMA Ophthalmol. 2014;132(1):77–83. doi: 10.1001/jamaophthalmol.2013.5511
  22. Boland MV, Gupta P, Ko F, et al. Evaluation of frequency-doubling technology perimetry as a means of screening for glaucoma and other eye diseases using the National Health and Nutrition Examination Survey. JAMA Ophthalmol. 2016;134(1):57–62. doi: 10.1001/jamaophthalmol.2015.4459
  23. Camp AS, Weinreb RN. Will рerimetry be performed to monitor glaucoma in 2025? Ophthalmology. 2017;124(12S):S71–S75. doi: 10.1016/j.ophtha.2017.04.009
  24. Jung KI, Park CK. Detection of functional change in preperimetric and perimetric glaucoma using 10-2 matrix perimetry. Am J Ophthalmol. 2017;182:35–44. doi: 10.1016/j.ajo.2017.07.007
  25. Furlanetto RL, Teixeira SH, Gracitelli CPB, et al. A. Structural and functional analyses of the optic nerve and lateral geniculate nucleus in glaucoma. PLoS ONE. 2018;13(3):e0194038. doi: 10.1371/journal.pone.0194038
  26. Hu R, Wang C, Racette L. Comparison of matrix frequency-doubling technology perimetry and standard automated perimetry in monitoring the development of visual field defects for glaucoma suspect eyes. PLоS ONE. 2017;12(5):e0178079. doi: 10.1371/journal.pone.0178079
  27. Terauchi R, Wada T, Ogawa S, et. аl. FDT perimetry for glaucoma detection in comprehensive health checkup service. J Ophthalmol. 2020;2020:4687398. doi: 10.1155/2020/4687398
  28. Boiko EV, Simakova IL, Kuzmicheva OV, et al. High-technological screening for glaucoma. Military medical journal. 2010;331(2):23–26. EDN: RNPEDH doi: 10.17816/RMMJ74956
  29. Yoon MK, Hwang T., Day S, et al. Comparison of Humphrey Matrix frequency doubling technology to standard automated perimetry in neuro-ophthalmic disease. Middle East Afr J Ophthalmol. 2012;19(2):211–215. doi: 10.4103/0974-9233.95254
  30. Aykan U, Akdemir MO, Yildirim O, Varlibas F. Screening for patients with mild Alzheimer Disease using frequency doubling technology perimetry. Neuroophthalmology. 2013;37(6):239–246. doi: 10.3109/01658107.2013.830627
  31. Arantes TE, Garcia CR, Tavares IM, Mello PA, Muccioli C. Relationship between retinal nerve fiber layer and visual field function in human immunodeficiency virus-infected patients without retinitis. Retina. 2012;32(1):152–159. doi: 10.1097/IAE.0b013e31821502e1
  32. Walsh DV, Capó-Aponte JE, Jorgensen-Wagers K, et al. Visual field dysfunctions in warfighters during different stages following blast and nonblast mTBI. Mil Med. 2015;180(2):178–185. doi: 10.7205/MILMED-D-14-00230
  33. Cesareo M, Martucci A, Ciuffoletti E, et al. Association between Alzheimer’s disease and glaucoma: a study based on Heidelberg retinal tomography and frequency doubling technology perimetry. Front Neurosci. 2015;9:479. doi: 10.3389/fnins.2015.00479
  34. Moyal L, Blumen-Ohana E, Blumen M, et al. Parafoveal and optic disc vessel density in patients with obstructive sleep apnea syndrome: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. 2018;256(7):1235–1243. doi: 10.1007/s00417-018-3943-7
  35. Corallo G, Cicinelli S, Papadia M, et al. Conventional perimetry, short-wavelength automated perimetry, frequency-doubling technology, and visual evoked potentials in the assessment of patients with multiple sclerosis. Eur J Ophthalmol. 2005;15(6):730–738. doi: 10.1177/112067210501500612
  36. Ruseckaite R, Maddess TD, Danta G, James AC. Frequency doubling illusion VEPs and automated perimetry in multiple sclerosis. Doc Ophthalmol. 2006;113(1):29–41. doi: 10.1007/s10633-006-9011-3
  37. Shahraki K, Mostafa SS, Kaveh AA, Yazdi HR. Comparing the sensitivity of visual evoked ptential and standard achromatic perimetry in diagnosis of optic neuritis. JOJ Ophthal. 2017;2(5):555–600. doi: 10.19080/JOJO.2017.02.555600003
  38. Serdyukova SА, Simakova IL. Computer perimetry in the diagnosis of primary open-angle glaucoma. Eye statements. 2018;11(1): 54–65. (In Russ.) EDN: YVLXCB doi: 10.17816/OV11154-65
  39. Simakova IL, Tikhonovskaya IA. Еvaluation of the effectiveness of frequency doubling technology perimetry in the diagnosis of optic neuropathies. National Journal of Glaucoma. 2022;21(1):23–36. (In Russ.) EDN: NWRCAB doi: 10.53432/2078-4104-2022-21-1-23-35
  40. Simakova IL, Kulikov AN, Tikhonovskaya IA. Assessment of the effectiveness of different variants of frequency doubling technology perimetry in monitoring the glaucoma process. Ophthalmology in Russia. 2022;19(4):815–821. EDN: BOYOTW doi: 10.18008/1816-5095-2022-4-815-821
  41. Grigoryev SG, Lobzin YuV, Skripchenko NV. The role and place of logistic regression and ROC analysis in solving medical diagnostic task. Journal Infectology. 2016;8(4):36–45. EDN: XFWBJT doi: 10.22625/2072-6732-2016-8-4-36-45
  42. Egorov EA, Alekseev VN. Pathogenesis and treatment of primary open-angle glaucoma. Moscow: GEOTAR-Media; 2017. 224 p. (In Russ.) EDN: YOVRHV

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Mean values of the scotomata amount (n ≥ 2 at p < 2, 1 and 0.5%), with 95% confidence intervals according to the results of the of computer strategies data: a — 24-2 HFA II; b — FDT-16; с — FDT-64

Download (118KB)
3. Fig. 2. Mean values of the global MD index with 95% confidence intervals according to the results of the of computer strategies data: a — 24-2 HFA II; b — FDT-16; c — FDT-64

Download (125KB)
4. Fig. 3. Correlation between the values of the global MD index according to the data of the threshold strategies FDT-16 and 24-2 HFA II (a); FDT-64 and 24-2 HFA II (b) in patients with the early stage of primary open-angle glaucoma

Download (127KB)
5. Fig. 4. Correlation between the values of the global MD index according to FDT-16 and 24-2 HFA II data (a), FDT-64 and 24-2 HFA II (b) in multiple sclerosis patients with a history of retrobulbar neuritis

Download (128KB)
6. Fig. 5. Correlation between the values of the global MD index according to FDT-16 and 24-2 HFA II data (a); FDT-64 and 24-2 HFA II data (b) in patients with multiple sclerosis without history of retrobulbar neuritis

Download (122KB)
7. Fig. 6. Conclusion on the results of the central visual field testing of the patient P. with multiple sclerosis performed using the threshold version of the author’s modification of the FDT perimetry: FDT-16 (a) and FDT-64 (b)

Download (284KB)
8. Fig. 7. Conclusion on the results of the central visual field testing of the patient D. with multiple sclerosis (location of scotomata in the central area), performed using the threshold strategy FDT-64

Download (161KB)
9. Fig. 8. Conclusion on the results of the central visual field testing of the patient V. with an early stage of primary open-angle glaucoma performed using the threshold version of the author’s modification of the FDT perimetry: FDT-16 (a) and FDT-64 (b)

Download (323KB)

Copyright (c) 2024 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».