Eye microcirculation in glaucoma. Part 3. Hypotensive therapy effect
- 作者: Petrov S.Y.1, Orlova E.N.1, Kiseleva T.N.1, Okhotsimskaya T.D.1, Markelova O.I.1, Glushchuk A.A.1
-
隶属关系:
- Helmholtz National Medical Research Center of Eye Diseases
- 期: 卷 18, 编号 2 (2025)
- 页面: 95-102
- 栏目: Reviews
- URL: https://journal-vniispk.ru/ov/article/view/312617
- DOI: https://doi.org/10.17816/OV632510
- EDN: https://elibrary.ru/WWIRXD
- ID: 312617
如何引用文章
详细
Glaucoma is the main cause of irreversible vision loss in developed countries. Currently, glaucoma is defined as a group of multifactorial diseases with similar clinical, morphological, and functional manifestations. The main cause of blindness is progressive death of retinal ganglion cells, leading to optic neuropathy. Currently, mechanical and vascular mechanisms are suggested to play a key role in the development of primary glaucoma. The mechanical process includes compression of the axons caused by increased intraocular pressure. The vascular component suggests reduced blood flow and ocular perfusion pressure. Examination methods of the eye vasculature in glaucoma are constantly being improved and range from invasive, including angiography with fluorescein and indocyanine intravenous administration, to high-tech non-contact types such as color flow Doppler and pulsed wave Doppler, optical coherence tomography angiography, and laser speckle flowgraphy. This review provides the assessment of retrobulbar and ocular blood flow in patients with glaucoma and ocular hypertension receiving different therapies. Rapidly advancing technologies allow developing and studying highly informative methods for assessing ocular blood flow, thus contributing to better understanding of eye microcirculation and the development of new effective glaucoma therapies.
作者简介
Sergey Petrov
Helmholtz National Medical Research Center of Eye Diseases
Email: glaucomatosis@gmail.com
ORCID iD: 0000-0001-6922-0464
SPIN 代码: 9220-8603
MD, Dr. Sci. (Medicine)
俄罗斯联邦, MoscowElena Orlova
Helmholtz National Medical Research Center of Eye Diseases
Email: nauka@igb.ru
ORCID iD: 0000-0002-5373-5620
SPIN 代码: 1970-4728
MD, Cand. Sci. (Medicine)
俄罗斯联邦, MoscowTatyana Kiseleva
Helmholtz National Medical Research Center of Eye Diseases
Email: tkiseleva05@gmail.com
ORCID iD: 0000-0002-9185-6407
SPIN 代码: 5824-5991
MD, Dr. Sci. (Medicine)
俄罗斯联邦, MoscowTatiana Okhotsimskaya
Helmholtz National Medical Research Center of Eye Diseases
Email: tata123@inbox.ru
ORCID iD: 0000-0003-1121-4314
SPIN 代码: 9917-7103
MD, Cand. Sci. (Medicine)
俄罗斯联邦, MoscowOksana Markelova
Helmholtz National Medical Research Center of Eye Diseases
编辑信件的主要联系方式.
Email: Levinaoi@mail.ru
ORCID iD: 0000-0002-8090-6034
MD
俄罗斯联邦, MoscowAndrei Glushchuk
Helmholtz National Medical Research Center of Eye Diseases
Email: andresgu1998@mail.ru
ORCID iD: 0009-0002-4128-572X
MD
俄罗斯联邦, Moscow参考
- Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–267. doi: 10.1136/bjo.2005.081224
- Neroev VV, Kiseleva OA, Bessmertny AM. The main results of a multicenter study of epidemiological features of primary open-angle glaucoma in the Russian Federation. Russian ophthalmological journal. 2013;6(3):4–7. EDN: QIWMDX
- Sotimehin AE, Ramulu PY. Measuring disability in glaucoma. J Glaucoma. 2018;27(11):939–949. doi: 10.1097/IJG.0000000000001068
- Flammer J, Orgul S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21(4):359–393. doi: 10.1016/s1350-9462(02)00008-3
- Henness S, Swainston Harrison T, Keating GM. Ocular carteolol: a review of its use in the management of glaucoma and ocular hypertension. Drugs Aging. 2007;24(6):509–528. doi: 10.2165/00002512-200724060-00007
- Tamaki Y, Araie M, Tomita K, et al. Effect of topical beta-blockers on tissue blood flow in the human optic nerve head. Curr Eye Res. 1997;16(11):1102–1110. doi: 10.1076/ceyr.16.11.1102.5101
- Tamaki Y, Araie M, Tomita K, et al. Effects of topical adrenergic agents on tissue circulation in rabbit and human optic nerve head evaluated with laser speckle tissue circulation analyzer. Surv Ophthalmol. 1997;42(S1):52–63. doi: 10.1016/s0039-6257(97)80027-6
- Montanari P, Marangoni P, Oldani A, et al. Color Doppler imaging study in patients with primary open-angle glaucoma treated with timolol 0.5% and carteolol 2%. Eur J Ophthalmol. 2001;11(3):240–244. doi: 10.1177/112067210101100305
- Mizuki K., Yamazaki Y. Effect of carteolol hydrochloride on ocular blood flow dynamics in normal human eyes. Jpn J Ophthalmol. 2000;44(5):570. doi: 10.1016/s0021-5155(00)00239-2
- Altan-Yaycioglu R, Turker G, Akdol S, et al. The effects of beta-blockers on ocular blood flow in patients with primary open angle glaucoma: a color doppler imaging study. Eur J Ophthalmol. 2001;11(1):37–46. doi: 10.1177/112067210101100108
- Chen MJ, Ching J, Chou K, et al. Color doppler imaging of retrobulbar hemodynamics after topical carteolol in normal tension glaucoma. Zhonghua Yi Xue Za Zhi (Taipei). 2001;64(10):575–580.
- Grunwald JE, Delehanty J. Effect of topical carteolol on the normal human retinal circulation. Invest Ophthalmol Vis Sci. 1992;33(6): 1853–1856.
- Kawai M, Nagaoka T, Takahashi A, et al. Effects of topical carteolol on retinal arterial blood flow in primary open-angle glaucoma patients. Jpn J Ophthalmol. 2012;56(5):458–463. doi: 10.1007/s10384-012-0156-1
- Lin Y-H, Su W-W, Huang S-M, et al. Optical coherence tomography angiography vessel density changes in normal-tension glaucoma treated with carteolol, brimonidine, or dorzolamide. J Glaucoma. 2021;30(8):690–696. doi: 10.1097/IJG.0000000000001859
- Miller WH, Dessert AM, Roblin RO. Heterocyclic sulfonamides as carbonic anhydrase inhibitors. J Am Chem Soc. 1950;72(11):4893–4896. doi: 10.1021/ja01167a012
- Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov. 2008;7(2):168–181. doi: 10.1038/nrd2467
- Carta F, Supuran CT, Scozzafava A. Novel therapies for glaucoma: a patent review 2007–2011. Expert Opin Ther Pat. 2012;22(1):79–88. doi: 10.1517/13543776.2012.649006
- Silver LH, Brinzolamide Dose-Response Study Group. Dose-response evaluation of the ocular hypotensive effect of brinzolamide ophthalmic suspension (Azopt). Surv Ophthalmol. 2000;44(2):147–153. doi: 10.1016/s0039-6257(99)00110-1
- Sugrue MF. Pharmacological and ocular hypotensive properties of topical carbonic anhydrase inhibitors. Prog Retin Eye Res. 2000;19(1):87–112. doi: 10.1016/s1350-9462(99)00006-3
- Iester M, Altieri M, Michelson G, et al. Retinal peripapillary blood flow before and after topical brinzolamide. Ophthalmologica. 2004;218(6):390–396. doi: 10.1159/000080942
- Stähle H. A historical perspective: development of clonidine. Pract Res Clin Anaesthesiol. 2000;14(2):237–246. doi: 10.1053/bean.2000.0079
- Bill A, Heilmann K. Ocular effects of clonidine in cats and monkeys (Macaca irus). Exp Eye Res. 1975;21(5):481–488. doi: 10.1016/0014-4835(75)90129-3
- Sebastiani A, Parmeggiani F, Costagliola C, et al. Effects of acute topical administration of clonidine 0.125%, apraclonidine 1.0% and brimonidine 0.2% on visual field parameters and ocular perfusion pressure in patients with primary open-angle glaucoma. Acta Ophthalmol Scand Suppl. 2002;80(s236):29–30. doi: 10.1034/j.1600-0420.80.s236.18.x
- Cantor LB. The evolving pharmacotherapeutic profile of brimonidine, an alpha 2-adrenergic agonist, after four years of continuous use. Expert Opin Pharmacother. 2000;1(4):815–834. doi: 10.1517/14656566.1.4.815
- Gilsbach R, Hein L. Are the pharmacology and physiology of alpha(2) adrenoceptors determined by alpha(2)-heteroreceptors and autoreceptors respectively? Br J Pharmacol. 2012;165(1):90–102. doi: 10.1111/j.1476-5381.2011.01533.x
- Costagliola C, dell’Omo R, Romano MR, et al. Pharmacotherapy of intraocular pressure: part I. Parasympathomimetic, sympathomimetic and sympatholytics. Expert Opin Pharmacother. 2009;10(16):2663–2677. doi: 10.1517/14656560903300103
- Camras CB, Schumer RA, Marsk A, et al. Intraocular pressure reduction with PhXA34, a new prostaglandin analogue, in patients with ocular hypertension. Arch Ophthalmol. 1992;110(12):1733–1738. doi: 10.1001/archopht.1992.01080240073034
- Stjernschantz J, Alm A. Latanoprost as a new horizon in the medical management of glaucoma. Curr Opin Ophthalmol. 1996;7(2):11–17. doi: 10.1097/00055735-199604000-00003
- Alm A. Latanoprost in the treatment of glaucoma. Clin Ophthalmol. 2014;8:1967–1985. doi: 10.2147/OPTH.S59162
- Liu C, Umapathi RM, Atalay E, et al. The effect of medical lowering of intraocular pressure on peripapillary and macular blood flow as measured by optical coherence tomography angiography in treatment-naive eyes. J Glaucoma. 2021;30(6):465–472. doi: 10.1097/IJG.0000000000001828
- Kurysheva NI. Assessment of the optic nerve head, peripapillary, and macular microcirculation in the newly diagnosed patients with primary open-angle glaucoma treated with topical tafluprost and tafluprost/timolol fixed combination. Taiwan J Ophthalmol. 2019;9(2):93–99. doi: 10.4103/tjo.tjo_108_17
- Tsuda S, Yokoyama Y, Chiba N, et al. Effect of topical tafluprost on optic nerve head blood flow in patients with myopic disc type. J Glaucoma. 2013;22(5):398–403. doi: 10.1097/IJG.0b013e318237c8b3
- Webers CAB, Beckers HJM, Nuijts RMMA, et al. Pharmacological management of primary open-angle glaucoma: second-line options and beyond. Drugs Aging. 2008;25(9):729–759. doi: 10.2165/00002512-200825090-00002
- Petrov SYu, Zinina VS, Volzhanin AV. The role of fixed dose combinations in the treatment of primary open-angle glaucoma. Russian annals of ophthalmology. 2018;134(4):100–107. doi: 10.17116/oftalma2018134041100 EDN: XWPZPN
- Sugiyama T, Kojima S, Ishida O, Ikeda T. Changes in optic nerve head blood flow induced by the combined therapy of latanoprost and beta blockers. Acta Ophthalmol. 2009;87(7):797–800. doi: 10.1111/j.1755-3768.2008.01460.x
- Karaskiewicz J, Penkala K, Mularczyk M, Lubinski W. Evaluation of retinal ganglion cell function after intraocular pressure reduction measured by pattern electroretinogram in patients with primary open-angle glaucoma. Doc Ophthalmol. 2017;134(2):89–97. doi: 10.1007/s10633-017-9575-0
- Feke GT, Rhee DJ, Turalba AV, Pasquale LR. Effects of dorzolamide-timolol and brimonidine-timolol on retinal vascular autoregulation and ocular perfusion pressure in primary open angle glaucoma. J Ocul Pharmacol Ther. 2013;29(7):639–645. doi: 10.1089/jop.2012.0271
- Rolle T, Tofani F, Brogliatti B, Grignolo FM. The effects of dorzolamide 2% and dorzolamide/timolol fixed combination on retinal and optic nerve head blood flow in primary open-angle glaucoma patients. Eye (Lond). 2008;22(9):1172–1179. doi: 10.1038/sj.eye.6703071
- Kurysheva NI. Vascular theory of the glaucomatous optic neuropathy pathogenesis: physiological and pathophysiological rationale. Part 2. National Journal glaucoma. 2017;16(4):98–109. EDN: ZWZTYT
- Ch’ng TW, Gillmann K, Hoskens K, et al. Effect of surgical intraocular pressure lowering on retinal structures — nerve fibre layer, foveal avascular zone, peripapillary and macular vessel density: 1 year results. Eye (Lond). 2020;34(3):562–571. doi: 10.1038/s41433-019-0560-6
- Gillmann K, Rao HL, Mansouri K. Changes in peripapillary and macular vascular density after laser selective trabeculoplasty: an optical coherence tomography angiography study. Acta Ophthalmol. 2022;100(2):203–211. doi: 10.1111/aos.14805
- James CB. Effect of trabeculectomy on pulsatile ocular blood flow. Br J Ophthalmol. 1994;78(11):818–822. doi: 10.1136/bjo.78.11.818
- Yang YC, Hulbert MF. Effect of trabeculectomy on pulsatile ocular blood flow. Br J Ophthalmol. 1995;79(5):507–508. doi: 10.1136/bjo.79.5.507-a
- Berisha F, Schmetterer K, Vass C, et al. Effect of trabeculectomy on ocular blood flow. Br J Ophthalmol. 2005;89(2):185–188. doi: 10.1136/bjo.2004.048173
- Kuerten D, Fuest M, Koch EC, et al. Long term effect of trabeculectomy on retrobulbar haemodynamics in glaucoma. Ophthalmic Physiol Opt. 2015;35(2):194–200. doi: 10.1111/opo.12188
- In JH, Lee SY, Cho SH, Hong YJ. Peripapillary vessel density reversal after trabeculectomy in glaucoma. J Ophthalmol. 2018:8909714. doi: 10.1155/2018/8909714
- Shin JW, Sung KR, Uhm KB, et al. Peripapillary microvascular improvement and lamina cribrosa depth reduction after trabeculectomy in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2017;58(13):5993–5999. doi: 10.1167/iovs.17-22787
- Kim J-A, Kim T-W, Lee EJ, et al. Microvascular changes in peripapillary and optic nerve head tissues after trabeculectomy in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2018;59(11):4614–4621. doi: 10.1167/iovs.18-25038
- Lommatzsch C, Rothaus K, Koch JM, et al. Retinal perfusion 6 months after trabeculectomy as measured by optical coherence tomography angiography. Int Ophthalmol. 2019;39(11):2583–2594. doi: 10.1007/s10792-019-01107-7
- Takeshima S, Higashide T, Kimura M, et al. Effects of trabeculectomy on waveform changes of laser speckle flowgraphy in open angle glaucoma. Invest Ophthalmol Vis Sci. 2019;60(2):677–684. doi: 10.1167/iovs.18-25694
补充文件
