Optimization of System of Early Detection of Oncological Diseases in Outpatient Medical Organizations

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

INTRODUCTION: Increased attention to the early detection and prevention of malignant neoplasms (MNP) is conditioned by their high medical and social significance.

AIM: To develop a methodology of early defection and stratification of risk for development of MNP at the outpatient stage using modern information technologies.

MATERIALS AND METHODS: The data of the official statistics of Rosstat and Health Ministry of Russia for the Voronezh region (VR) were used. To collect the primary information about the level of oncological alertness (OA) of primary care workers, a survey was conducted using a specially designed questionnaire (Oncological Alertness on an Outpatient Visit) which contained 10 questions reflecting the frequency of MNP and precancer detection, doctors’ knowledge, methods of early diagnosis and patient routing in case this pathology is identified. In the survey, 112 medical workers participated. To identify MNP at early stages, methods of evaluation and stratification of the risk of MNP development were elaborated on the basis of a multi-stage analysis of significance of the identified risk factors (‘danger signals’) with the use of artificial intelligence. The method was tried on a test sample (100 patients, MNP in 55).

RESULTS: A ‘rough’ increase in the incidence rate for 2013–2022 was 11.4%. The mortality rate from MNPs in 2022 was 170.5 per 100 thousand cases, which is 0.2 higher than in the previous year. About 60% of the newly identified MNPs were diagnosed at III–IV stage. A comprehensive study of the causative factors of advanced cases permitted to identify the most significant ones: late seeking medical care, latent asymptomatic course of MNP and insufficient OA level of primary care physicians. When testing the developed technique, the probability for the development of the disease was estimated as high in 41 (82%) patients with MNP, medium in 7 (14%), and in 2 (4%) patients the prognosis was erroneous — a low probability was predicted. Of the 50 patients who did not have MNP at the time of examination, 23 (46%) were referred to the group of low, 21 (42%) — of medium, 6 (12%) — of high risk of having a MNP. After the introduction of the developed technique, the detectability of gastric cancer increased by 3%, of colon cancer — by 2%, of tracheal, bronchial and lung cancer — by 6%, of breast, cervix and prostate cancer — by 1%, 8%, and 2%, respectively.

CONCLUSION: The developed method permits to identify and exclude unreliable data, to select the optimal feature space characterized by the minimal dimension with sufficient informational value. This permits identification of precancerous conditions at the preclinical stage and facilitates timely detection of MNP at early stages. 

作者简介

Igor' Esaulenko

N. N. Burdenko Voronezh State Medical University

编辑信件的主要联系方式.
Email: mail@vrngmu.ru
ORCID iD: 0000-0002-2424-2974
SPIN 代码: 9361-6140

MD, Dr. Sci. (Med.), Professor

俄罗斯联邦, Voronezh

Tat'yana Petrova

N. N. Burdenko Voronezh State Medical University

Email: stud.forum@mail.ru
ORCID iD: 0000-0002-5701-9779
SPIN 代码: 9440-7638

MD, Dr. Sci. (Med.), Professor

俄罗斯联邦, Voronezh

Aleksey Tolbin

N. N. Burdenko Voronezh State Medical University

Email: shketj4@gmail.com
ORCID iD: 0000-0001-8633-712X
SPIN 代码: 9441-7270

Аssistant of the department of medical prevention of the Voronezh State Medical University

俄罗斯联邦, Voronezh

Ol'ga Saurina

N. N. Burdenko Voronezh State Medical University

Email: saurina051@mail.ru
ORCID iD: 0000-0003-2182-1310
SPIN 代码: 4590-0252

MD, Dr. Sci. (Med.), Professor

俄罗斯联邦, Voronezh

参考

  1. Aleksandrova LM, Starinsky VV, Kaprin AD, et al. Prevention of oncological diseases as the basis of interaction of oncological service with primary link of health care. Research and Practical Medicine Journal. 2017;4(1):74–80. (In Russ). doi: 10.17709/2409-2231-2017-4-1-10
  2. Kaprin AD, Starinskiy VV, Shakhzadova AO, editors. Sostoyaniye onkologicheskoy pomoshchi naseleniyu Rossii v 2021 godu. Moscow; 2022. (In Russ).
  3. Moshurov IP, Danilov VM, Abramov SI. Epidemiological features of the incidence of malignant tumors in population of the Voronezh region, for 10 years of observation. Current Problems of Health Care and Medical Statistics. 2018;(2):152–66. (In Russ).
  4. Sych GV, Kosolapov VP, Gulov VP, et al. The organization of cancer services in the territory of the Voronezh region: state, problems and prospects of development. Journal of New Medical Technologies, eEdition. 2018;(3):46–54. (In Russ). doi: 10.24411/2075-4094-2018-16048
  5. Chernykh EA, Chernov AV. Accessibility of Medical Assistance to Patients with Diseases of the Circulatory System in the Voronezh Region. I. P. Pavlov Russian Medical Biological Herald. 2022;30(2):167–74. (In Russ). doi: 10.17816/PAVLOVJ97253
  6. Kaprin AD, Starinskiy VV, Shakhzadova AO, editors. Zlokachestvennyye novoobrazovaniya v Rossii v 2019 godu (zabolevayemost’ i smertnost’). Moscow; 2020. (In Russ).
  7. Kiselev IL, Khvostovoy VV, Dolgin VI, et al. Analysis of malignancies among health care workers in primary care. In: Materialy Pervogo Mezhdunarodnogo Foruma Onkologii i Radiologii; Moscow, 23–27 September 2019. Moscow; 2019. P. 143. (In Russ).
  8. Merabishvili VM. Malignant tumors in the North-West Federal Region of Russia (morbidity, mortality, index accuracy, survival). Express-information. 5th ed. Saint-Petersburg; 2020. P. 236. (In Russ).
  9. Zhuikova LD, Choynzonov EL, Ananina OA, et al. The cancer care status for the population of the administrative centers of the Siberian Federal Region. Profilakticheskaya Meditsina. 2021;24(3):7–13. (In Russ). doi: 10.17116/profmed2021240317
  10. Moshurov IP, Kravets BB, Korotkikh NV, et al. Optimizatsiya onkologicheskoy pomoshchi v pervichnom zvene zdravookhraneniya. Voronezh: Nauchnaya kniga; 2017. (In Russ).
  11. Serov DV. Assessment of the accessibility and satisfaction adult population of the Moscow in outpatient care. I. P. Pavlov Russian Medical Biological Herald. 2016;(2):31–7. (In Russ).
  12. Sycheva AS, Vertkin AL, Kebina AL. Oncological alertness in patients at outpatient therapeutic stage. Medical Alphabet. 2021;(7):41–5. (In Russ). doi: 10.33667/2078-5631-2021-7-41-45
  13. Moshurov IP, Kravets BB, Vlasov AV, et al. Kriterii ocenki rezul'tativnosti onkologicheskoy pomoshchi v rayonnykh bol'nitsakh. Vrach-Aspirant. 2016;(4):22–30. (In Russ).
  14. Fedos’kina AK, Fedos’kina LA. Implementation of the Lean Approach in the Context of the New Model of Medical Organization: Results and Prospects. I. P. Pavlov Russian Medical Biological Herald. 2022;30(1):39–50. (In Russ). doi: 10.17816/PAVLOVJ70181

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Topology of the artificial neuronal network, search for regularities and generalization of input data.

下载 (39KB)
3. Fig. 2. Distribution of patients with malignant neoplasms by the period between the first visit to a doctor and confirmation of the diagnosis (%).

下载 (26KB)

版权所有 © Eco-Vector, 2023


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».