Molecular mechanisms of antimicrobial defense strategy of bacterial cell
- 作者: Lutsenko A.V.1,2, Yasenyavskaya A.L.1, Samotrueva M.A.1
-
隶属关系:
- Astrakhan State Medical University
- Astrakhan State Technical University
- 期: 卷 33, 编号 1 (2025)
- 页面: 133-144
- 栏目: Reviews
- URL: https://journal-vniispk.ru/pavlovj/article/view/291055
- DOI: https://doi.org/10.17816/PAVLOVJ569343
- ID: 291055
如何引用文章
详细
INTRODUCTION: Solution to the problem of antibiotic resistance (ABR) and the continuing spread of multidrug resistant strains is a strategic task of practical healthcare. An important tool for improving antimicrobial pharmacotherapy, along with active search for new effective drug compounds, can be a detailed investigation of the prime cause of the emergence and effect of the extracellular environment on the molecular mechanisms of bacterial resistance to chemotherapeutic drugs.
AIM: Analysis of the literature devoted to the molecular mechanisms of antimicrobial defense strategy of the bacterial cell against the effect of medical drugs, and to promising strategies of combating antibiotic-resistant agents.
MATERIALS AND METHODS: A search and analysis of the scientific literature was conducted in PubMed, eLibrary, Europe PMC, WoS, CyberLeninka and other databases for the last 5 years. The search queries included the following word combinations: for Russian-language publications the problem of ABR, environmental factors of antibiotic sensitivity, resistance mechanisms, resistance genes, mobile genetic elements; for English-language publications: antibiotic resistance evolution, antibiotic resistance genes, antibiotic resistance in biofilms, transmission of antibiotic resistance. A total of 100 literature sources published from 2018 to 2022 have been analyzed, of which 44 were included in the review.
An analysis of domestic and foreign sources showed that a significant role in the development of ABR in microorganisms is assigned to enzymatic beta-lactamase activity, specific protective proteins of microorganisms, as well as the ability of pathogenic strains to form biofilms. Besides, according to the results of studies, the main source of resistance genes is the environment, where the transfer of ABR genes between representatives of different bacterial taxa occurs. Promising areas in the fight against antibiotic-resistant pathogens are mathematical modeling, synthetic biology, phage therapy.
CONCLUSION: In modern studies, the tendency of microorganisms to ABR presents a serious evolutionary and ecological problem. The uncontrolled and unjustified current use of antibacterial drugs in medicine, veterinary medicine and agriculture provoked the activation of the mechanisms of bacterial cell defense known by the moment, and caused enhancement of the adaptive capacity of bacterial pathogens and spread of multidrug resistant strains. The review also provides data on various strategies aimed at solving the ABR problem.
作者简介
Anna Lutsenko
Astrakhan State Medical University; Astrakhan State Technical University
编辑信件的主要联系方式.
Email: ahrapova@yandex.ru
ORCID iD: 0000-0001-8423-3351
SPIN 代码: 3292-9049
Cand. Sci. (Biol.)
俄罗斯联邦, Astrakhan; AstrakhanAnna Yasenyavskaya
Astrakhan State Medical University
Email: yasen_9@mail.ru
ORCID iD: 0000-0003-2998-2864
SPIN 代码: 5809-5856
MD, Dr. Sci. (Med.), Associate Professor
俄罗斯联邦, AstrakhanMarina Samotrueva
Astrakhan State Medical University
Email: ms1506@mail.ru
ORCID iD: 0000-0001-5336-4455
SPIN 代码: 5918-1341
MD, Dr. Sci. (Med.), Professor
俄罗斯联邦, Astrakhan参考
- Uddin TM, Chakraborty AJ, Khusro A, et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J Infect Public Health. 2021;14(12):1750–66. doi: 10.1016/j.jiph.2021.10.020
- Zubareva VD, Sokolova OV, Bezborodova NA, et al. Molecular mechanisms and genetic determinants of resistance to antibacterial drugs in microorganisms (review). Agricultural Biology. 2022;57(2):237–56. (In Russ). doi: 10.15389/agrobiology.2022.2.237eng
- Larsson DGJ, Flach C–F. Antibiotic resistance in the environment. Nat Rev Microbiol. 2022;20(5):257–69. doi: 10.1038/s41579-021-00649-x
- Davidovich NV, Solovieva NV, Bashilova EN, et al. Endoecological Aspects of Antibiotic Resistance: A Literature Review. Human Ecology. 2020;27(5):31–6. (In Russ). doi: 10.33396/1728-0869-2020-5-31-36
- Starikova AA, Gabitova NM, Tsibizova AA, et al. Study of antimicrobial activity of new Quinazolin-4(3n)-one derivatives with respect to Echerichia coli and Klebsiella pnevmoniae. Astrakhan Medical Journal. 2022;17(1):60–71. (In Russ). doi: 10.48612/agmu/2022.17.1.60.71
- Taggar G, Attiq Rehman M, Boerlin P, et al. Molecular Epidemiology of Carbapenemases in Enterobacteriales from Humans, Animals, Food and the Environment. Antibiotics (Basel). 2020;9(10):693. doi: 10.3390/antibiotics9100693
- Wilson DN, Hauryliuk V, Atkinson GC, et al. Target protection as a key antibiotic resistance mechanism. Nat Rev Microbiol. 2020;18(11):637–48. doi: 10.1038/s41579-020-0386-z
- Shur KV, Bekker OB, Zaichikova MV, et al. Genetic Aspects of Mycobacterium tuberculosis Drug Resistance and Virulence. Russian Journal of Genetics. 2018;54(12):1363–75. (In Russ). doi: 10.1134/S0016675818120147
- Zemlyanko OM, Rogoza TM, Zhouravleva GA. Mechanisms of bacterial multiresistance to antibiotics. Ecological Genetics. 2018; 16(3):4–17. (In Russ). doi: 10.17816/ecogen1634-17
- Felker IG, Gordeeva EI, Stavitskaya NV, et al. Prospects and Obstacles for Clinical Use of the Inhibitors of Mycobacterium tuberculosis Efflux Pumps. Biologicheskiye Membrany. Zhurnal Membrannoy i Kletochnoy Biologii. 2021;38(5):317–39. (In Russ). doi: 10.31857/S0233475521050054
- Gun MA, Bozdogan B, Coban AY. Tuberculosis and beta-lactam antibiotics. Future Microbiol. 2020;15(10):937–44. doi: 10.2217/fmb-2019-0318
- Fratoni AJ, Nicolau DP, Kuti JL. A guide to therapeutic drug monitoring of β-lactam antibiotics. Pharmacotherapy. 2021;41(2):220–33. doi: 10.1002/phar.2505
- Ibrahim ME, Abbas M, Al-Shahrai AM, et al. Phenotypic Characterization and Antibiotic Resistance Patterns of Extended-Spectrum β-Lactamase- and AmpC β-Lactamase-Producing Gram-Negative Bacteria in a Referral Hospital, Saudi Arabia. Can J Infect Dis Med Microbiol. 2019;2019:6054694. doi: 10.1155/2019/6054694
- Philippon A, Jacquier H, Ruppé E, et al. Structure-based classification of class A beta-lactamases, an update. Curr Res Transl Med. 2019;67(4):115–22. doi: 10.1016/j.retram.2019.05.003
- Tulara NK. Nitrofurantoin and Fosfomycin for Extended Spectrum Beta-lactamases Producing Escherichia coli and Klebsiella pneumonia. J Glob Infect Dis. 2018;10(1):19–21. doi: 10.4103/jgid.jgid_72_17
- Ero R, Yan X–F, Gao Y–G. Ribosome Protection Proteins — “New” Players in the Global Arms Race with Antibiotic-Resistant Pathogens. Int J Mol Sci. 2021;22(10):5356. doi: 10.3390/ijms22105356
- Khryanin AA. Microbial Biofilms: Modern Concepts. Antibiotics and Chemotherapy. 2020;65 5-6):70–7. (In Russ). doi: 10.37489/0235-2990-2020-65-5-6-70-77
- Ciofu O, Moser C, Jensen PØ, et al. Tolerance and resistance of microbial biofilms. Nat Rev Microbiol. 2022;20(10):621–35. doi: 10.1038/s41579-022-00682-4
- Muhammad MH, Idris AL, Fan X, et al. Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Front Microbiol. 2020; 11:928. doi: 10.3389/fmicb.2020.00928
- Zhou L, Zhang Y, Ge Y, et al. Regulatory Mechanisms and Promising Applications of Quorum Sensing-Inhibiting Agents in Control of Bacterial Biofilm Formation. Front Microbiol. 2020;11:589640. doi: 10.3389/fmicb.2020.589640
- Uruén C, Chopo–Escuin G, Tommassen J, et al. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics (Basel). 2020;10(1):3. doi: 10.3390/antibiotics10010003
- Petukhova IN, Dmitriyeva NV, Grigor'yevskaya ZV, et al. Infektsii, svyazannyye s obrazovaniyem bioplenok. Malignant Tumours. 2019; 9(3s1):26–31. (In Russ). doi: 10.18027/2224-5057-2019-9-3s1-26-31
- Orazi G, O’Toole GA. “It Takes a Village”: Mechanisms Underlying Antimicrobial Recalcitrance of Polymicrobial Biofilms. J Bacteriol. 2019;202(1):e00530-19. doi: 10.1128/jb.00530-19
- Karkman A, Pärnänen K, Larsson DGJ. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat Commun. 2019;10(1):80. doi: 10.1038/s41467-018-07992-3
- Burtseva SA, Byrsa MN, Chebotar' VI. Raznoobraziye predstaviteley klassa Actinobacteria v vodnoy tolshche ozernoy sistemy «La Izvor». In: Instruire prin cercetare pentru o societate prosperă; Chişinău, 20–21 March 2021. 8th ed. Chişinău; 2021;1:165–72. Available at: https://ibn.idsi.md/en/vizualizare_articol/127529. Accessed: 2023 September 12. (In Russ).
- Bengtsson–Palme J, Kristiansson E, Larsson DGJ. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev. 2018;42(1):fux053. doi: 10.1093/femsre/fux053
- Partridge SR, Kwong SM, Firth N, et al. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31(4): e00088-17. doi: 10.1128/cmr.00088-17
- Andryukov BG, Besednova NN, Zaporozhets TS. Mobile Genetic Elements of Prokaryotes and Their Role in the Formation of Antibiotic Resistance in Pathogenic Bacteria. Antibiotics and Chemotherapy. 2022; 67(1-2):62–74. (In Russ). doi: 10.37489/0235-2990-2022-67-1-2-62-74
- Humphrey S, Fillol–Salom A, Quiles–Puchalt N, et al. Bacterial chromosomal mobility via lateral transduction exceeds that of classical mobile genetic elements. Nat Commun. 2021;12(1):6509. doi: 10.1038/s41467-021-26004-5
- Hall JPJ, Harrison E, Baltrus DA. Introduction: the secret lives of microbial mobile genetic elements. Philos Trans R Soc Lond B Biol Sci. 2022;377(1842):20200460. doi: 10.1098/rstb.2020.0460
- Mustafin RN. The Role of Mobile Genetic Elements in the Origin of Life on Earth. Uspekhi Fiziologicheskikh Nauk. 2019;50(3):45–64. (In Russ). doi: 10.1134/S0301179819020085
- Akrami F, Rajabnia M, Pournajaf A. Resistance integrons; A mini review. Caspian J Intern Med. 2019;10(4):370–6. doi: 10.22088/cjim.10.4.370
- Xu D, Lu W. Defensins: A Double-Edged Sword in Host Immunity. Front Immunol. 2020;11:764. doi: 10.3389/fimmu.2020.00764
- Shemyakin IG, Firstova VV, Fursova NK, et al. New-generation antibiotics, bacteriophage endolysins and nanomaterials for combating pathogens. Review. Biokhimiya. 2020;85(11):1615–32. (In Russ). doi: 10.31857/S0320972520110081
- Arepyeva MA, Kolbin AS, Sidorenko SV, et al. A mathematical model for predicting the development of bacterial resistance based on the relationship between the level of antimicrobial resistance and the volume of antibiotic consumption. J Glob Antimicrob Resist. 2017;8:148–56. doi: 10.1016/j.jgar.2016.11.010
- Pinzi L, Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int J Mol Sci. 2019;20(18):4331. doi: 10.3390/ijms20184331
- Jadhav PA, Baravkar A. Recent advances in antimicrobial activity of pyrimidines: a review. Asian J Pharm Clin Res. 2022;15(2):4–10. doi: 10.22159/ajpcr.2022.v15i2.43686
- Samotrueva MA, Gabitova NM, Genatullina GN, et al. Assessment of Antimycobacterial Activity of Newly Synthesized Pyrimidine Derivatives Against Mycobacterium tuberculosis. Antibiotics and Chemotherapy. 2022;67(3–4):4–15. (In Russ). doi: 10.37489/0235-2990-2022-67-3-4-4-15
- Gordillo Altamirano FL, Barr JJ. Phage Therapy in the Post-antibiotic Era. Clin Microbiol Rev. 2019;32(2):e00066-18. doi: 10.1128/cmr.00066-18
- Khan A, Ostaku J, Aras E, et al. Combating Infectious Diseases with Synthetic Biology. ACS Synth Biol. 2022;11(2):528–37. doi: 10.1021/acssynbio.1c00576
- Mokhov AA. «Synthetic» genom and products resultant using it as new objects of legal relations. Courier of Kutafin Moscow State Law University (MSAL)). 2020;(5):51–9. (In Russ). doi: 10.17803/2311-5998.2020.69.5.051-059
- Sineva ON. Isolation of rare Genera of actinomycetes — antibiotic producers from soils using Aloe Arborescens juice. Antibiotics and Chemotherapy. 2022;66(9–10):4–11. (In Russ). doi: 10.37489/0235-2990-2021-66-9-10-4-11
- Liu T, Wang J, Gong X, et al. Rosemary and Tea Tree Essential Oils Exert Antibiofilm Activities In Vitro Against Staphylococcus aureus and Escherichia coli. J Food Prot. 2020;83(7):1261–7. doi: 10.4315/0362-028x.jfp-19-337
- Knezevic P, Aleksic V, Simin N, et al. Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii. J Ethnopharmacol. 2016;178:125–36. doi: 10.1016/j.jep.2015.12.008
补充文件
