Lysosomal storage diseases. Mucolipidosis

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The epidemiology, clinical, biochemical and molecular genetic characteristics of mucolipidoses — autosomal recessive lysosomal storage diseases that combine the clinical manifestations of mucopolysaccharidoses and sphingolipidoses — are presented. In accordance with the modern classification, types I, II and III mucolipidoses are classified as glycoproteinoses, and type IV mucolipidoses are classified as gangliosidoses. Mucolipidoses type I, or sialidosis, is caused by the presence of inactivating mutations in the α-neuraminidase gene NEU1, and a related disease is galactosialidosis, accompanied by secondary deficiency of α-neuraminidase and β-galactosidase in the CTSA gene of the protective protein cathepsin A. Both diseases are characterized by early progressive delay in psychomotor development, muscle myoclonus, severe ophthalmopathy and early death of patients. The pathogenesis of diseases is associated with excessive accumulation of sialocontaining glycoproteins and oligosaccharides in lysosomes. Hereditary deficiency of N-acetylglucosaminyl-1-phosphotransferase, necessary for the addition of mannose-6-phosphate to the oligosaccharides of lysosomal enzymes, underlies the development of two allelic diseases caused by mutations in the GNPTAB gene mucolipidoses type II, or “I-cell” disease and mucolipidoses type III, alpha/beta or pseudopolydystrophy of Hurler. Mutations in the GNPTG gene, which encodes the gamma subunit of this enzyme, are responsible for the development of the milder type III mucolipidoses (gamma). All these diseases are characterized by impaired phosphorylation and transport of lysosomal enzymes, which is accompanied by severe growth retardation, skeletal abnormalities and early death of patients. Pathogenesis of mucolipidoses type IV, or sialolipidosis, associated with the simultaneous accumulation of phospholipids, sphingolipids, mucopolysaccharides and gangliosides, which occurs as a result of mutations in the MCOLN1 gene, encoding mucolipin 1, which forms a channel localized on the membranes of lysosomes and endosomes, involved in the regulation of lipid and protein transport. The article presents a description of clinical cases of mucolipidosis types II and IIIA. Preclinical trials have shown promise for enzyme replacement therapy, chaperone therapy, and gene therapy for the treatment of sialidosis and galactosialidosis. However, pathogenetic methods of therapy for mucolipidoses have not been described in clinical practice to date.

作者简介

Viktoria Gorbunova

Saint Petersburg State Pediatric Medical University

编辑信件的主要联系方式.
Email: vngor@mail.ru

PhD, Dr. Sci. (Biology), Professor, Department of General and molecular medical genetics

俄罗斯联邦, 2 Litovskaya st., Saint Petersburg, 194100

Natalia Buchinskaia

Saint Petersburg State Pediatric Medical University; Saint Petersburg State Medical Diagnostic Center (Genetic medical center)

Email: nbuchinskaia@gmail.com
ORCID iD: 0000-0002-2335-3023
SPIN 代码: 4820-4246

MD, PhD pediatrician, Assistant at the Department of Hospital Pediatrics, geneticist, Consulting Department

俄罗斯联邦, 2 Litovskaya st., Saint Petersburg, 194100; Saint Petersburg

Anastasia Vechkasova

Saint Petersburg State Medical Diagnostic Center (Genetic medical center)

Email: vechkasova.nastia@mail.ru
ORCID iD: 0009-0004-8775-9630
SPIN 代码: 2642-3514

General Practitioner, Geneticist, Consulting Department

俄罗斯联邦, Saint Petersburg

参考

  1. Avanesyan RI, Avdeeva TG, Alexeeva EI, et al. Pediatrics: national guidelines. Vol. 1. Moscow: GEOTAR-Media; 2009. (In Russ.)
  2. Gorbunova VN. Congenital metabolic diseases. Lysosomal storage diseases. Pediatrician (St. Petersburg). 2021;12(2):73–84. EDN: LTJHVN doi: 10.17816/PED12273-83
  3. Gorbunova VN, Buchinskaia NV, Vechkasova AO, Kruglova VS. Lysosomal storage diseases. Sphingolipidoses — leukodystrophy. Pediatrician (St. Petersburg). 2023; 14(6):89–112. EDN: ARALAQ doi: 10.17816/PED626382
  4. Semyachkina AN, Voskoboeva EYu, Bukina ТM, et al. Clinical and genetic characteristics of mucolipidosis II and IIIa types in children. Russian Bulletin of Perinatology and Pediatrics. 2017;62(3):71–78. EDN: YUBSJH doi: 10.21508/1027-4065-2017-62-3-71-78
  5. Arora V, Setia N, Dalal A, et al. Sialidosis type II: Expansion of phenotypic spectrum and identification of a common mutation in seven patients. Mol Genet Metab Rep. 2020;22: 100561. doi: 10.1016/j.ymgmr.2019.100561
  6. Bach G, Webb MB, Bargal R, et al. The frequency of mucolipidosis type IV in the Ashkenazi Jewish population and the identification of 3 novel MCOLN1 mutations. Hum Mutat. 2005;26(6):591. doi: 10.1002/humu.9385
  7. Bargal R, Avidan N, Ben-Asher E, et al. Identification of the gene causing mucolipidosis type IV. Nat Genet. 2000;26(1):118–123. doi: 10.1038/79095
  8. Bargal R, Avidan N, Olender T, et al. Mucolipidosis type IV: novel MCOLN1 mutations in Jewish and non-Jewish patients and the frequency of the disease in the Ashkenazi Jewish population. Hum Mutat. 2001; 17(5):397–402. doi: 10.1002/humu.1115
  9. Bargal R, Bach G. Mucolipidosis type IV: abnormal transport of lipids to lysosomes. J Inherit Metab Dis. 1997;20(5):625–632. doi: 10.1023/a:1005362123443
  10. Bargal R, Zeigler M, Abu-Libdeh B, et al. When Mucolipidosis III meets Mucolipidosis II: GNPTA gene mutations in 24 patients. Mol Genet Metab. 2006;88(4):359–363. doi: 10.1016/j.ymgme.2006.03.003
  11. Bassi MT, Manzoni M, Monti E, et al. Cloning of the gene encoding a novel integral membrane protein, mucolipidin-and identification of the two major founder mutations causing mucolipidosis type IV. Am J Hum Genet. 2000;67(5):1110–1120. doi: 10.1086/321205
  12. Bonten E, Spoel A, van der Fornerod M, et al. Characterization of human lysosomal neuraminidase defines the molecular basis of the metabolic storage disorder sialidosis. Genes Dev. 1996;10 : 3156–3169. doi: 10.1101/gad.10.24.3156
  13. Bonten EJ, Yogalingam G, Hu H, et al. Chaperone-mediated gene therapy with recombinant AAV-PPCA in a new mouse model of type I sialidosis. Biochim Biophys Acta. 2013;1832(10):1784–1792. doi: 10.1016/j.bbadis.2013.06.002
  14. Caciotti A, Catarzi S, Tonin R, et al. Galactosialidosis: review and analysis of CTSA gene mutations. Orphanet J Rare Dis. 2013;8:114. doi: 10.1186/1750-1172-8-114
  15. Cadaoas J, Hu H, Boyle G, et al. Galactosialidosis: preclinical enzyme replacement therapy in a mouse model of the disease, a proof of concept. Mol Ther Methods Clin Dev. 2020;20:191– 203. doi: 10.1016/j.omtm.2020.11.012
  16. Kudo M, Brem MS, Canfield WM. Mucolipidosis II (I-cell disease) and mucolipidosis IIIA (classical pseudo-hurler polydystrophy) are caused by mutations in the GlcNAc-phosphotransferase alpha / beta-subunits precursor gene. Am J Hum Genet. 2006;78(3):451–463. doi: 10.1086/500849
  17. Cathey SS, Leroy JG, Wood T, et al. Phenotype and genotype in mucolipidoses II and III alpha/beta: a study of 61 probands. J Med Genet. 2010;47(1):38–48. doi: 10.1136/jmg.2009.067736
  18. Chen C -S, Bach G, Pagano RE. Abnormal transport along the lysosomal pathway in mucolipidosis, type IV disease. PNAS USA. 1998;95(11):6373–6378. doi: 10.1073/pnas.95.11.6373
  19. d’Azzo A, Machado E, Annunziata I. Pathogenesis, emerging therapeutic targets and treatment in Sialidosis. Expert Opin Orphan Drugs. 2015 ;3(5):491–504. doi: 10.1517/21678707.2015.1025746
  20. De Geer K, Mascianica K, Naess K, et al. Unraveling mucolipidosis type III gamma through whole genome sequencing in late-onset retinitis pigmentosa: a case report. BMC Ophthalmol. 2023;23(1 ):394. doi: 10.1186/s12886-023-03136-4
  21. Edelmann L, Dong J, Desnick RJ, Kornreich R. Carrier screening for mucolipidosis type IV in the American Ashkenazi Jewish population. Am J Hum Genet. 2002;70(4):1023–1027. doi: 10.1086/339519
  22. Encarnação M, Lacerda L, Costa R, et al. Molecular analysis of the GNPTAB and GNPTG genes in 13 patients with mucolipidosis type II or type III — identification of eight novel mutations. Clin Genet. 2009;76(1):76–84. doi: 10.1111/j.1399-0004.2009.01185.x
  23. Bonten EJ, Arts WF, Beck M, et al. Novel mutations in lysosomal neuraminidase identify functional domains and determine clinical severity in sialidosis. Hum Mol Genet. 2000;9(18):2715–2725, doi: 10.1093/hmg/9.18.2715
  24. Fares H, Greenwald I. Genetic analysis of endocytosis in Caenorhabditis elegans : coelomocyte uptake defective mutants. Genetics. 2001;159(1):133–145. doi: 10.1093/genetics/159.1.133
  25. Fedyna A, Drayna D, Kang C. Characterization of a mutation commonly associated with persistent stuttering: evidence for a founder mutation. J Hum Genet. 2011;56 (1):80–82. doi: 10.1038/jhg.2010.125
  26. Galjart NJ, Gillemans N, Harris A, et al. Expression of cDNA encoding the human “protective protein” associated with lysosomal beta-galactosidase and neuraminidase: homology to yeast proteases. Cell. 1988;54(6):755–7 64. doi: 10.1016/S0092-8674(88)90999-3
  27. Geer JS, Skinner SA, Goldin E, Holden KR. Mucolipidosis type IV: a subtle pediatric neurodegenerative disorder. Pediatr Neurol. 2010;42(3):223–226. doi: 10.1016/j.pediatrneurol.2009.10.002
  28. Halal F, Chitayat D, Parikh H, et al. Ring chromosome 20 and possible assignment of the structural gene encoding human carboxypeptidase-L to the distal segment of the long arm of chromosome 20. Am J Med Genet. 1992;43(3):576–579. doi: 10.1002/ajmg.1320430314
  29. Harrison TR. Chapter 316. Lysosomal storage diseases. In : Internal diseases. In 10 books. B. 8. 1996. P. 250–273.
  30. Higaki K, Li L, Bahrudin U, et al. Chemical chaperone therapy: chaperone effect on mutant enzyme and cellular pathophysiology in β-galactosidase deficiency. Hum Mutat. 2011;32(7 ):843–852. doi: 10.1002/humu.21516
  31. Hossain MA, Higaki K, Shinpo M, et al. Chemical chaperone treatment for galactosialidosis: Effect of NOEV on β-galactosidase activities in fibroblasts. Brain Dev. 2016;38(2):175–180. doi: 10.1016/j.braindev.2015.07.006
  32. Hu H, Gomero E, Bonten E, et al. Preclinical dose-finding study with a liver-tropic, recombinant AAV-2/8 vector in the mouse model of galactosialidosis. Mol Ther. 2012;20(2):267–274. doi: 10.1038/mt.2011.227
  33. Kang C, Riazuddin S, Mundorff J, et al. Mutations in the lysosomal enzyme-targeting pathway and persistent stuttering. N Engl J Med. 2010;362(8):677–685. doi: 10.1056/NEJMoa0902630
  34. Khan A, Sergi C. Sialidosis: A review of morphology and molecular biology of a rare pediatric disorder. Diagnostics (Basel). 2018;8(2 ):29. doi: 10.3390/diagnostics8020029
  35. Khan SA, Tomatsu SC. Mucolipidoses overview: Past, present, and future. Int J Mol Sci. 2020;21(18):6812. doi: 10.3390/ijms21186812
  36. Kleijer WJ, Geilen GC, Janse HC, et al. Cathepsin A deficiency in galactosialidosis: studies of patients and carriers in 16 families. Pediatr Res. 1996;39(6):1067–1071. doi: 10.1203/00006450-199606000-00022
  37. Kudo M, Bao M, D’Souza A, et al. The alpha- and beta-subunits of the human UDP-N-acetylglucosamine: lysosomal enzyme N-acetylglucosamine-1-phosphotransferase [corrected] are encoded by a single cDNA. J Biol Chem. 2005;280 (43):36141–36149. doi: 10.1074/jbc.M509008200
  38. Kudo M, Brem MS, Canfield WM. Mucolipidosis II (I-cell disease) and mucolipidosis IIIA (classical pseudo-hurler polydystrophy) are caused by mutations in the GlcNAc-phosphotransferase alpha / beta -subunits precursor gene. Am J Hum Genet. 2006;78(3):451–463. doi: 10.1086/500849
  39. LaPlante JM, Ye CP, Quinn SJ, et al. Functional links between mucolipin-1 and Ca2 + -dependent membrane trafficking in mucolipidosis IV. Biochem Biophys Res Commun. 2004;322(4): 1384–1391. doi: 10.1016/j.bbrc.2004.08.045
  40. Leimig T, Mann L, del Pilar Martin M, et al. Functional amelioration of murine galactosialidosis by genetically modified bone marrow hematopoietic progenitor cells. Blood. 2002;99(9): 3169–3178. doi: 10.1182/blood.V99.9.3169
  41. Lowden JA, O’Brien JS. Sialidosis: a review of human neuraminidase deficiency. Am J Hum Genet. 1979;31(1):1–18.
  42. Lukong KE, Landry K, Elsliger M-A, et al. Mutations in sialidosis impair sialidase binding to the lysosomal multienzyme complex. J Biol Chem. 2001;276 (20):17286–17290. doi: 10.1074/jbc.M100460200
  43. Raychowdhury MK, González-Perrett S, Montalbetti N, et al. Molecular pathophysiology of mucolipidosis type IV: pH dysregulation of the mucolipin-1 cation channel. Hum Mol Genet. 2004;13(6):617–627. doi: 10.1093/hmg/ddh067
  44. Marschner K, Kollmann K, Schweizer M, et al. A key enzyme in the biogenesis of lysosomes is a protease that regulates cholesterol metabolism. Science. 2011;333(6038):87–90. doi: 10.1126/science.1205677
  45. Misko A, Wood L, Kiselyov K, et al. Progress in elucidating pathophysiology of mucolipidosis IV. Neurosci Lett. 2021 ;755:135944. doi: 10.1016/j.neulet.2021.135944
  46. Morreau H, Galjart NJ, Willemsen R, et al. Human lysosomal protective protein. Glycosylation, intracellular transport, and association with beta-galactosidase in the endoplasmic reticulum. J Biol Chem. 1992;267(25):17949–179 56. doi: 10.1016/S0021-9258(19)37135-2
  47. Mosca R, van de Vlekkert D, Campos Y, et al. Conventional and unconventional therapeutic strategies for sialidosis type I. J Clin Med. 2020;9(3):695. doi: 10.3390/jcm9030695
  48. Mueller OT, Henry WM, Haley LL, et al. Sialidosis and galactosialidosis: chromosomal assignment of two genes associated with neu raminidase-deficiency disorders. PNAS USA. 1986;83(6): 1817–1821. doi: 10.1073/pnas.83.6.1817
  49. Nampoothiri S, Elcioglu NH, Koca SS, et al. Does the clinical phenotype of mucolipidosis-IIIγ differ from its αβ counterpart?: supporting facts in a cohort of 18 patients. Clin Dysmorphol. 2019;28(1):7–16. doi: 10.1097/MCD.0000000000000249
  50. de Geest N, Bonten E, Mann L, et al. Systemic and neurologic abnormalities distinguish the lysosomal disorders sialidosi s and galactosialidosis in mice. Hum Mol Genet. 2002;11(12):1455–1464. doi: 10.1093/hmg/11.12.1455
  51. Naumchik BM, Gupta A, Flanagan-Steet H, et al. The role of hematopoietic cell transplant in the glycoprotein diseases. Cells. 2020;9(6):1411. doi: 10.3390/cells9061411
  52. Neeraja K, Holla VV, Prasad S, et al. Sialidosis type I without a cherry red spot — is there a genetic basis? J Mov Disord. 2021;14(1): 65–69. doi: 10.14802/jmd.20083
  53. Oheda Y, Kotani M, Murata M, et al. Elimination of abnormal sialylglycoproteins in fibroblasts with sialidosis and galactosialidosis by normal gene transfer and enzyme replacement. Glycobiology. 2006;16(4):271–280. doi: 10.1093/glycob/cwj069
  54. Oohira T, Nagata N, Akaboshi I, et al. The infantile form of sialidosis type II associated with congenital adrenal hyperplasia: possible linkage between HLA and the neuraminida se deficiency gene. Hum Genet. 1985;70(4):341–343. doi: 10.1007/BF00295374
  55. Otomo T, Muramatsu T, Yorifuji T, et al. Mucolipidosis II and III alpha/beta: mutation analysis of 40 Japanese patients showed genotype-phenotype correlation. J Hum Genet. 2009;54(3):145–151. doi: 10.1038/jhg.2009.3
  56. Persichetti E, Chuzhanova NA, Dardis A, et al. Identification and molecular characterization of six novel mutations in the UDP-N-acetylglucosamine-1-phosphotransferase gamma subunit (GNPTG) gene in patients with mucolipidosis III gamma. Hum Mutat. 2009;30(6 ):978–984. doi: 10.1002/humu.20959
  57. Pohl S, Encarnacão M, Castrichini M, et al. Loss of N-acetylglucosamine-1-phosphotransferase gamma subunit due to intronic mutation in GNPTG causes mucolipidosis type III gamma: Implications for molecular and cellular diagnostics. Am J Med Genet A. 2010;152A(1):124–132. doi: 10.1002/ajmg.a.33170
  58. Pshezhetsky AV, Richard C, Michaud L, et al. Cloning, expression and chromosomal mapping of human lysosomal sialidase and characterization of mutations in sialidosis. Nat Genet. 1997;15(3): 316–320. doi: 10.1038/ng0397-316
  59. Raas-Rothschild A, Bargal R, DellaPergola S, et al. Mucolipidosis type IV: the origin of the disease in the Ashkenazi Jewish population. Eur J Hum Genet. 1999;7(4):496–498. doi: 10.1038/sj.ejhg.5200277
  60. Raas-Rothschild A, Cormier-Daire V, Bao M, et al. Molecular basis of variant pseudo-hurler polydystrophy (mucolipidosis IIIC). J Clin Investig. 2000;105(5):673–681. doi: 10.1172/JCI5826
  61. Rottier RJ, Bonten E, d’Azzo A. A point mutation in the neu-1 locus causes the neuraminidase defect in the SM/J mouse. Hum Mol Genet. 1998;7(2):313–321. doi: 10.1093/hmg/7.2.313
  62. Schrader KA, Heravi-Moussavi A, Waters PJ, et al. Using next-generation sequencing for the diagnosis of rare disorders: a family with retinitis pigmentosa and skeletal abnormalities. J Pathol. 2011;225(1):12–18. doi: 10.1002/path.2941
  63. Seyrantepe V, Hinek A, Peng J, et al. Enzymatic activity of lysosomal carboxypeptidase (cathepsin) A is required for proper elastic fiber formation and inactivation of endothelin-1. Circulation. 2008;117(15):1973–1981. doi: 10.1161/CIRCULATIONAHA.107.733212
  64. Seyrantepe V, Poupetova H, Froissart R, et al. Molecular pathology of NEU1 gene in sialidosis. Hum Mutat. 2003 ;22(5):343–352. doi: 10.1002/humu.10268
  65. Slaugenhaupt SA, Acierno JS Jr, Helbling LA, et al. Mapping of the mucolipidosis type IV gene to chromosome 19p and definition of founder haplotypes. Am J Hum Genet. 1999;65(3 ):773–778. doi: 10.1086/302549
  66. Sun M, Goldin E, Stahl S, et al. Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum Mol Genet. 2000;9(17):2471–2478. doi: 10.1093/hmg/9.17.2471
  67. Takahashi Y, Nakamura Y, Yamaguchi S, Orii T. Urinary oligosaccharide excretion and severity of g alactosialidosis and sialidosis. Clin Chim Acta. 1991;203(2–3):199–210. doi: 10.1016/0009-8981(91)90292-k
  68. Takano T, Shimmoto M, Fukuhara Y, et al. Galactosialidosis: clinical and molecular analysis of 19 Japanese patients. Brain Dysfunct. 1991;4(5):271–280.
  69. Tiede S, Muschol N, Reutter G, et al. Missense mutations in N-acetylglucosamine-1-phosphotransferase alpha/beta subunit gene in a patient with mucolipidosis III and a mild clinical phenotype. Am J Med Genet A. 2005;1 37A(3):235–240. doi: 10.1002/ajmg.a.30868
  70. Venkatachalam K, Long AA, Elsaesser R, et al. Motor deficit in a Drosophila model of mucolipidosis type IV due to defective clearance of apoptotic cells. Cell. 2008;135(5): 838–851. doi: 10.1016/j.cell.2008.09.041
  71. Venugopal B, Browning MF, Curcio-Morelli C, et al. Neurologic, gastric, and opthalmologic pathologies in a murine model of mucolipidosis type IV. Am J Hum Genet. 2007;81(5):1070–1083. doi: 10.1086/521954
  72. Vergarajauregui S, Connelly PS, Daniels MP, Puertollano R. Autophagic dysfunction in mucolipidosis type IV patients. Hum Mol Genet. 2008;17(17) :2723–2737. doi: 10.1093/hmg/ddn174
  73. Verheijen FW, Palmeri S, Hoogeveen AT, Galjaard H. Human placental neuraminidase. Activation, stabilization and association with beta-galactosidase and its protective protein. Eur J Biochem. 1985; 149(2):315–321. doi: 10.1111/j.1432-1033.1985.tb08928.x
  74. Verheijen FW, Palmeri S, Galjaard H. Purification and partial characterization of lysosomal neuraminidase from human placenta. Eur J Biochem. 1987;162(1):63–67. doi: 10.1111/j.1432-1033.1987.tb10542.x
  75. Wiegant J, Galjart NJ, Raap AK, d’Azzo A. The gene encoding human protective protein (PPGB) is on chromosome 20. Genomics. 1991;10 (2):345–349. doi: 10.1016/0888-7543(91)90318-9
  76. Yogalingam G, Weber B, Meehan J, et al. Mucopolysaccharidosis type IIIB: characterisation and expression of wild-type and mutant recombinant alpha-N-acetylglucosaminidase and relationship with sanfilippo phenotype in an attenuated patient. Biochim Biophys Acta. 2000;1502(3):415–4 25. doi: 10.1016/s0925-4439(00)00066-1
  77. Zhou X-Y, Morreau H, Rottier R, et al. Mouse model for the lysosomal disorder galactosialidosis and correction of the phenotype with overexpressing erythroid precursor cells. Genes Dev. 1995;9(21):2623–2634. doi: 10.1101/gad.9.21.2623
  78. Zhou X -Y, van der Spoel A, Rottier R, et al. Molecular and biochemical analysis of protective protein/cathepsin A mutations: correlation with clinical severity in galactosialidosis. Hum Mol Genet. 1996;5(12):1977–1987. doi: 10.1093/hmg/5.12.1977

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2024


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».