Lysosomal storage diseases. Mucolipidosis
- 作者: Gorbunova V.N.1, Buchinskaia N.V.1,2, Vechkasova A.O.2
-
隶属关系:
- Saint Petersburg State Pediatric Medical University
- Saint Petersburg State Medical Diagnostic Center (Genetic medical center)
- 期: 卷 15, 编号 5 (2024)
- 页面: 81-98
- 栏目: Наследственные болезни обмена
- URL: https://journal-vniispk.ru/pediatr/article/view/286935
- DOI: https://doi.org/10.17816/PED15581-98
- ID: 286935
如何引用文章
详细
The epidemiology, clinical, biochemical and molecular genetic characteristics of mucolipidoses — autosomal recessive lysosomal storage diseases that combine the clinical manifestations of mucopolysaccharidoses and sphingolipidoses — are presented. In accordance with the modern classification, types I, II and III mucolipidoses are classified as glycoproteinoses, and type IV mucolipidoses are classified as gangliosidoses. Mucolipidoses type I, or sialidosis, is caused by the presence of inactivating mutations in the α-neuraminidase gene NEU1, and a related disease is galactosialidosis, accompanied by secondary deficiency of α-neuraminidase and β-galactosidase in the CTSA gene of the protective protein cathepsin A. Both diseases are characterized by early progressive delay in psychomotor development, muscle myoclonus, severe ophthalmopathy and early death of patients. The pathogenesis of diseases is associated with excessive accumulation of sialocontaining glycoproteins and oligosaccharides in lysosomes. Hereditary deficiency of N-acetylglucosaminyl-1-phosphotransferase, necessary for the addition of mannose-6-phosphate to the oligosaccharides of lysosomal enzymes, underlies the development of two allelic diseases caused by mutations in the GNPTAB gene mucolipidoses type II, or “I-cell” disease and mucolipidoses type III, alpha/beta or pseudopolydystrophy of Hurler. Mutations in the GNPTG gene, which encodes the gamma subunit of this enzyme, are responsible for the development of the milder type III mucolipidoses (gamma). All these diseases are characterized by impaired phosphorylation and transport of lysosomal enzymes, which is accompanied by severe growth retardation, skeletal abnormalities and early death of patients. Pathogenesis of mucolipidoses type IV, or sialolipidosis, associated with the simultaneous accumulation of phospholipids, sphingolipids, mucopolysaccharides and gangliosides, which occurs as a result of mutations in the MCOLN1 gene, encoding mucolipin 1, which forms a channel localized on the membranes of lysosomes and endosomes, involved in the regulation of lipid and protein transport. The article presents a description of clinical cases of mucolipidosis types II and IIIA. Preclinical trials have shown promise for enzyme replacement therapy, chaperone therapy, and gene therapy for the treatment of sialidosis and galactosialidosis. However, pathogenetic methods of therapy for mucolipidoses have not been described in clinical practice to date.
作者简介
Viktoria Gorbunova
Saint Petersburg State Pediatric Medical University
编辑信件的主要联系方式.
Email: vngor@mail.ru
PhD, Dr. Sci. (Biology), Professor, Department of General and molecular medical genetics
俄罗斯联邦, 2 Litovskaya st., Saint Petersburg, 194100Natalia Buchinskaia
Saint Petersburg State Pediatric Medical University; Saint Petersburg State Medical Diagnostic Center (Genetic medical center)
Email: nbuchinskaia@gmail.com
ORCID iD: 0000-0002-2335-3023
SPIN 代码: 4820-4246
MD, PhD pediatrician, Assistant at the Department of Hospital Pediatrics, geneticist, Consulting Department
俄罗斯联邦, 2 Litovskaya st., Saint Petersburg, 194100; Saint PetersburgAnastasia Vechkasova
Saint Petersburg State Medical Diagnostic Center (Genetic medical center)
Email: vechkasova.nastia@mail.ru
ORCID iD: 0009-0004-8775-9630
SPIN 代码: 2642-3514
General Practitioner, Geneticist, Consulting Department
俄罗斯联邦, Saint Petersburg参考
- Avanesyan RI, Avdeeva TG, Alexeeva EI, et al. Pediatrics: national guidelines. Vol. 1. Moscow: GEOTAR-Media; 2009. (In Russ.)
- Gorbunova VN. Congenital metabolic diseases. Lysosomal storage diseases. Pediatrician (St. Petersburg). 2021;12(2):73–84. EDN: LTJHVN doi: 10.17816/PED12273-83
- Gorbunova VN, Buchinskaia NV, Vechkasova AO, Kruglova VS. Lysosomal storage diseases. Sphingolipidoses — leukodystrophy. Pediatrician (St. Petersburg). 2023; 14(6):89–112. EDN: ARALAQ doi: 10.17816/PED626382
- Semyachkina AN, Voskoboeva EYu, Bukina ТM, et al. Clinical and genetic characteristics of mucolipidosis II and IIIa types in children. Russian Bulletin of Perinatology and Pediatrics. 2017;62(3):71–78. EDN: YUBSJH doi: 10.21508/1027-4065-2017-62-3-71-78
- Arora V, Setia N, Dalal A, et al. Sialidosis type II: Expansion of phenotypic spectrum and identification of a common mutation in seven patients. Mol Genet Metab Rep. 2020;22: 100561. doi: 10.1016/j.ymgmr.2019.100561
- Bach G, Webb MB, Bargal R, et al. The frequency of mucolipidosis type IV in the Ashkenazi Jewish population and the identification of 3 novel MCOLN1 mutations. Hum Mutat. 2005;26(6):591. doi: 10.1002/humu.9385
- Bargal R, Avidan N, Ben-Asher E, et al. Identification of the gene causing mucolipidosis type IV. Nat Genet. 2000;26(1):118–123. doi: 10.1038/79095
- Bargal R, Avidan N, Olender T, et al. Mucolipidosis type IV: novel MCOLN1 mutations in Jewish and non-Jewish patients and the frequency of the disease in the Ashkenazi Jewish population. Hum Mutat. 2001; 17(5):397–402. doi: 10.1002/humu.1115
- Bargal R, Bach G. Mucolipidosis type IV: abnormal transport of lipids to lysosomes. J Inherit Metab Dis. 1997;20(5):625–632. doi: 10.1023/a:1005362123443
- Bargal R, Zeigler M, Abu-Libdeh B, et al. When Mucolipidosis III meets Mucolipidosis II: GNPTA gene mutations in 24 patients. Mol Genet Metab. 2006;88(4):359–363. doi: 10.1016/j.ymgme.2006.03.003
- Bassi MT, Manzoni M, Monti E, et al. Cloning of the gene encoding a novel integral membrane protein, mucolipidin-and identification of the two major founder mutations causing mucolipidosis type IV. Am J Hum Genet. 2000;67(5):1110–1120. doi: 10.1086/321205
- Bonten E, Spoel A, van der Fornerod M, et al. Characterization of human lysosomal neuraminidase defines the molecular basis of the metabolic storage disorder sialidosis. Genes Dev. 1996;10 : 3156–3169. doi: 10.1101/gad.10.24.3156
- Bonten EJ, Yogalingam G, Hu H, et al. Chaperone-mediated gene therapy with recombinant AAV-PPCA in a new mouse model of type I sialidosis. Biochim Biophys Acta. 2013;1832(10):1784–1792. doi: 10.1016/j.bbadis.2013.06.002
- Caciotti A, Catarzi S, Tonin R, et al. Galactosialidosis: review and analysis of CTSA gene mutations. Orphanet J Rare Dis. 2013;8:114. doi: 10.1186/1750-1172-8-114
- Cadaoas J, Hu H, Boyle G, et al. Galactosialidosis: preclinical enzyme replacement therapy in a mouse model of the disease, a proof of concept. Mol Ther Methods Clin Dev. 2020;20:191– 203. doi: 10.1016/j.omtm.2020.11.012
- Kudo M, Brem MS, Canfield WM. Mucolipidosis II (I-cell disease) and mucolipidosis IIIA (classical pseudo-hurler polydystrophy) are caused by mutations in the GlcNAc-phosphotransferase alpha / beta-subunits precursor gene. Am J Hum Genet. 2006;78(3):451–463. doi: 10.1086/500849
- Cathey SS, Leroy JG, Wood T, et al. Phenotype and genotype in mucolipidoses II and III alpha/beta: a study of 61 probands. J Med Genet. 2010;47(1):38–48. doi: 10.1136/jmg.2009.067736
- Chen C -S, Bach G, Pagano RE. Abnormal transport along the lysosomal pathway in mucolipidosis, type IV disease. PNAS USA. 1998;95(11):6373–6378. doi: 10.1073/pnas.95.11.6373
- d’Azzo A, Machado E, Annunziata I. Pathogenesis, emerging therapeutic targets and treatment in Sialidosis. Expert Opin Orphan Drugs. 2015 ;3(5):491–504. doi: 10.1517/21678707.2015.1025746
- De Geer K, Mascianica K, Naess K, et al. Unraveling mucolipidosis type III gamma through whole genome sequencing in late-onset retinitis pigmentosa: a case report. BMC Ophthalmol. 2023;23(1 ):394. doi: 10.1186/s12886-023-03136-4
- Edelmann L, Dong J, Desnick RJ, Kornreich R. Carrier screening for mucolipidosis type IV in the American Ashkenazi Jewish population. Am J Hum Genet. 2002;70(4):1023–1027. doi: 10.1086/339519
- Encarnação M, Lacerda L, Costa R, et al. Molecular analysis of the GNPTAB and GNPTG genes in 13 patients with mucolipidosis type II or type III — identification of eight novel mutations. Clin Genet. 2009;76(1):76–84. doi: 10.1111/j.1399-0004.2009.01185.x
- Bonten EJ, Arts WF, Beck M, et al. Novel mutations in lysosomal neuraminidase identify functional domains and determine clinical severity in sialidosis. Hum Mol Genet. 2000;9(18):2715–2725, doi: 10.1093/hmg/9.18.2715
- Fares H, Greenwald I. Genetic analysis of endocytosis in Caenorhabditis elegans : coelomocyte uptake defective mutants. Genetics. 2001;159(1):133–145. doi: 10.1093/genetics/159.1.133
- Fedyna A, Drayna D, Kang C. Characterization of a mutation commonly associated with persistent stuttering: evidence for a founder mutation. J Hum Genet. 2011;56 (1):80–82. doi: 10.1038/jhg.2010.125
- Galjart NJ, Gillemans N, Harris A, et al. Expression of cDNA encoding the human “protective protein” associated with lysosomal beta-galactosidase and neuraminidase: homology to yeast proteases. Cell. 1988;54(6):755–7 64. doi: 10.1016/S0092-8674(88)90999-3
- Geer JS, Skinner SA, Goldin E, Holden KR. Mucolipidosis type IV: a subtle pediatric neurodegenerative disorder. Pediatr Neurol. 2010;42(3):223–226. doi: 10.1016/j.pediatrneurol.2009.10.002
- Halal F, Chitayat D, Parikh H, et al. Ring chromosome 20 and possible assignment of the structural gene encoding human carboxypeptidase-L to the distal segment of the long arm of chromosome 20. Am J Med Genet. 1992;43(3):576–579. doi: 10.1002/ajmg.1320430314
- Harrison TR. Chapter 316. Lysosomal storage diseases. In : Internal diseases. In 10 books. B. 8. 1996. P. 250–273.
- Higaki K, Li L, Bahrudin U, et al. Chemical chaperone therapy: chaperone effect on mutant enzyme and cellular pathophysiology in β-galactosidase deficiency. Hum Mutat. 2011;32(7 ):843–852. doi: 10.1002/humu.21516
- Hossain MA, Higaki K, Shinpo M, et al. Chemical chaperone treatment for galactosialidosis: Effect of NOEV on β-galactosidase activities in fibroblasts. Brain Dev. 2016;38(2):175–180. doi: 10.1016/j.braindev.2015.07.006
- Hu H, Gomero E, Bonten E, et al. Preclinical dose-finding study with a liver-tropic, recombinant AAV-2/8 vector in the mouse model of galactosialidosis. Mol Ther. 2012;20(2):267–274. doi: 10.1038/mt.2011.227
- Kang C, Riazuddin S, Mundorff J, et al. Mutations in the lysosomal enzyme-targeting pathway and persistent stuttering. N Engl J Med. 2010;362(8):677–685. doi: 10.1056/NEJMoa0902630
- Khan A, Sergi C. Sialidosis: A review of morphology and molecular biology of a rare pediatric disorder. Diagnostics (Basel). 2018;8(2 ):29. doi: 10.3390/diagnostics8020029
- Khan SA, Tomatsu SC. Mucolipidoses overview: Past, present, and future. Int J Mol Sci. 2020;21(18):6812. doi: 10.3390/ijms21186812
- Kleijer WJ, Geilen GC, Janse HC, et al. Cathepsin A deficiency in galactosialidosis: studies of patients and carriers in 16 families. Pediatr Res. 1996;39(6):1067–1071. doi: 10.1203/00006450-199606000-00022
- Kudo M, Bao M, D’Souza A, et al. The alpha- and beta-subunits of the human UDP-N-acetylglucosamine: lysosomal enzyme N-acetylglucosamine-1-phosphotransferase [corrected] are encoded by a single cDNA. J Biol Chem. 2005;280 (43):36141–36149. doi: 10.1074/jbc.M509008200
- Kudo M, Brem MS, Canfield WM. Mucolipidosis II (I-cell disease) and mucolipidosis IIIA (classical pseudo-hurler polydystrophy) are caused by mutations in the GlcNAc-phosphotransferase alpha / beta -subunits precursor gene. Am J Hum Genet. 2006;78(3):451–463. doi: 10.1086/500849
- LaPlante JM, Ye CP, Quinn SJ, et al. Functional links between mucolipin-1 and Ca2 + -dependent membrane trafficking in mucolipidosis IV. Biochem Biophys Res Commun. 2004;322(4): 1384–1391. doi: 10.1016/j.bbrc.2004.08.045
- Leimig T, Mann L, del Pilar Martin M, et al. Functional amelioration of murine galactosialidosis by genetically modified bone marrow hematopoietic progenitor cells. Blood. 2002;99(9): 3169–3178. doi: 10.1182/blood.V99.9.3169
- Lowden JA, O’Brien JS. Sialidosis: a review of human neuraminidase deficiency. Am J Hum Genet. 1979;31(1):1–18.
- Lukong KE, Landry K, Elsliger M-A, et al. Mutations in sialidosis impair sialidase binding to the lysosomal multienzyme complex. J Biol Chem. 2001;276 (20):17286–17290. doi: 10.1074/jbc.M100460200
- Raychowdhury MK, González-Perrett S, Montalbetti N, et al. Molecular pathophysiology of mucolipidosis type IV: pH dysregulation of the mucolipin-1 cation channel. Hum Mol Genet. 2004;13(6):617–627. doi: 10.1093/hmg/ddh067
- Marschner K, Kollmann K, Schweizer M, et al. A key enzyme in the biogenesis of lysosomes is a protease that regulates cholesterol metabolism. Science. 2011;333(6038):87–90. doi: 10.1126/science.1205677
- Misko A, Wood L, Kiselyov K, et al. Progress in elucidating pathophysiology of mucolipidosis IV. Neurosci Lett. 2021 ;755:135944. doi: 10.1016/j.neulet.2021.135944
- Morreau H, Galjart NJ, Willemsen R, et al. Human lysosomal protective protein. Glycosylation, intracellular transport, and association with beta-galactosidase in the endoplasmic reticulum. J Biol Chem. 1992;267(25):17949–179 56. doi: 10.1016/S0021-9258(19)37135-2
- Mosca R, van de Vlekkert D, Campos Y, et al. Conventional and unconventional therapeutic strategies for sialidosis type I. J Clin Med. 2020;9(3):695. doi: 10.3390/jcm9030695
- Mueller OT, Henry WM, Haley LL, et al. Sialidosis and galactosialidosis: chromosomal assignment of two genes associated with neu raminidase-deficiency disorders. PNAS USA. 1986;83(6): 1817–1821. doi: 10.1073/pnas.83.6.1817
- Nampoothiri S, Elcioglu NH, Koca SS, et al. Does the clinical phenotype of mucolipidosis-IIIγ differ from its αβ counterpart?: supporting facts in a cohort of 18 patients. Clin Dysmorphol. 2019;28(1):7–16. doi: 10.1097/MCD.0000000000000249
- de Geest N, Bonten E, Mann L, et al. Systemic and neurologic abnormalities distinguish the lysosomal disorders sialidosi s and galactosialidosis in mice. Hum Mol Genet. 2002;11(12):1455–1464. doi: 10.1093/hmg/11.12.1455
- Naumchik BM, Gupta A, Flanagan-Steet H, et al. The role of hematopoietic cell transplant in the glycoprotein diseases. Cells. 2020;9(6):1411. doi: 10.3390/cells9061411
- Neeraja K, Holla VV, Prasad S, et al. Sialidosis type I without a cherry red spot — is there a genetic basis? J Mov Disord. 2021;14(1): 65–69. doi: 10.14802/jmd.20083
- Oheda Y, Kotani M, Murata M, et al. Elimination of abnormal sialylglycoproteins in fibroblasts with sialidosis and galactosialidosis by normal gene transfer and enzyme replacement. Glycobiology. 2006;16(4):271–280. doi: 10.1093/glycob/cwj069
- Oohira T, Nagata N, Akaboshi I, et al. The infantile form of sialidosis type II associated with congenital adrenal hyperplasia: possible linkage between HLA and the neuraminida se deficiency gene. Hum Genet. 1985;70(4):341–343. doi: 10.1007/BF00295374
- Otomo T, Muramatsu T, Yorifuji T, et al. Mucolipidosis II and III alpha/beta: mutation analysis of 40 Japanese patients showed genotype-phenotype correlation. J Hum Genet. 2009;54(3):145–151. doi: 10.1038/jhg.2009.3
- Persichetti E, Chuzhanova NA, Dardis A, et al. Identification and molecular characterization of six novel mutations in the UDP-N-acetylglucosamine-1-phosphotransferase gamma subunit (GNPTG) gene in patients with mucolipidosis III gamma. Hum Mutat. 2009;30(6 ):978–984. doi: 10.1002/humu.20959
- Pohl S, Encarnacão M, Castrichini M, et al. Loss of N-acetylglucosamine-1-phosphotransferase gamma subunit due to intronic mutation in GNPTG causes mucolipidosis type III gamma: Implications for molecular and cellular diagnostics. Am J Med Genet A. 2010;152A(1):124–132. doi: 10.1002/ajmg.a.33170
- Pshezhetsky AV, Richard C, Michaud L, et al. Cloning, expression and chromosomal mapping of human lysosomal sialidase and characterization of mutations in sialidosis. Nat Genet. 1997;15(3): 316–320. doi: 10.1038/ng0397-316
- Raas-Rothschild A, Bargal R, DellaPergola S, et al. Mucolipidosis type IV: the origin of the disease in the Ashkenazi Jewish population. Eur J Hum Genet. 1999;7(4):496–498. doi: 10.1038/sj.ejhg.5200277
- Raas-Rothschild A, Cormier-Daire V, Bao M, et al. Molecular basis of variant pseudo-hurler polydystrophy (mucolipidosis IIIC). J Clin Investig. 2000;105(5):673–681. doi: 10.1172/JCI5826
- Rottier RJ, Bonten E, d’Azzo A. A point mutation in the neu-1 locus causes the neuraminidase defect in the SM/J mouse. Hum Mol Genet. 1998;7(2):313–321. doi: 10.1093/hmg/7.2.313
- Schrader KA, Heravi-Moussavi A, Waters PJ, et al. Using next-generation sequencing for the diagnosis of rare disorders: a family with retinitis pigmentosa and skeletal abnormalities. J Pathol. 2011;225(1):12–18. doi: 10.1002/path.2941
- Seyrantepe V, Hinek A, Peng J, et al. Enzymatic activity of lysosomal carboxypeptidase (cathepsin) A is required for proper elastic fiber formation and inactivation of endothelin-1. Circulation. 2008;117(15):1973–1981. doi: 10.1161/CIRCULATIONAHA.107.733212
- Seyrantepe V, Poupetova H, Froissart R, et al. Molecular pathology of NEU1 gene in sialidosis. Hum Mutat. 2003 ;22(5):343–352. doi: 10.1002/humu.10268
- Slaugenhaupt SA, Acierno JS Jr, Helbling LA, et al. Mapping of the mucolipidosis type IV gene to chromosome 19p and definition of founder haplotypes. Am J Hum Genet. 1999;65(3 ):773–778. doi: 10.1086/302549
- Sun M, Goldin E, Stahl S, et al. Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum Mol Genet. 2000;9(17):2471–2478. doi: 10.1093/hmg/9.17.2471
- Takahashi Y, Nakamura Y, Yamaguchi S, Orii T. Urinary oligosaccharide excretion and severity of g alactosialidosis and sialidosis. Clin Chim Acta. 1991;203(2–3):199–210. doi: 10.1016/0009-8981(91)90292-k
- Takano T, Shimmoto M, Fukuhara Y, et al. Galactosialidosis: clinical and molecular analysis of 19 Japanese patients. Brain Dysfunct. 1991;4(5):271–280.
- Tiede S, Muschol N, Reutter G, et al. Missense mutations in N-acetylglucosamine-1-phosphotransferase alpha/beta subunit gene in a patient with mucolipidosis III and a mild clinical phenotype. Am J Med Genet A. 2005;1 37A(3):235–240. doi: 10.1002/ajmg.a.30868
- Venkatachalam K, Long AA, Elsaesser R, et al. Motor deficit in a Drosophila model of mucolipidosis type IV due to defective clearance of apoptotic cells. Cell. 2008;135(5): 838–851. doi: 10.1016/j.cell.2008.09.041
- Venugopal B, Browning MF, Curcio-Morelli C, et al. Neurologic, gastric, and opthalmologic pathologies in a murine model of mucolipidosis type IV. Am J Hum Genet. 2007;81(5):1070–1083. doi: 10.1086/521954
- Vergarajauregui S, Connelly PS, Daniels MP, Puertollano R. Autophagic dysfunction in mucolipidosis type IV patients. Hum Mol Genet. 2008;17(17) :2723–2737. doi: 10.1093/hmg/ddn174
- Verheijen FW, Palmeri S, Hoogeveen AT, Galjaard H. Human placental neuraminidase. Activation, stabilization and association with beta-galactosidase and its protective protein. Eur J Biochem. 1985; 149(2):315–321. doi: 10.1111/j.1432-1033.1985.tb08928.x
- Verheijen FW, Palmeri S, Galjaard H. Purification and partial characterization of lysosomal neuraminidase from human placenta. Eur J Biochem. 1987;162(1):63–67. doi: 10.1111/j.1432-1033.1987.tb10542.x
- Wiegant J, Galjart NJ, Raap AK, d’Azzo A. The gene encoding human protective protein (PPGB) is on chromosome 20. Genomics. 1991;10 (2):345–349. doi: 10.1016/0888-7543(91)90318-9
- Yogalingam G, Weber B, Meehan J, et al. Mucopolysaccharidosis type IIIB: characterisation and expression of wild-type and mutant recombinant alpha-N-acetylglucosaminidase and relationship with sanfilippo phenotype in an attenuated patient. Biochim Biophys Acta. 2000;1502(3):415–4 25. doi: 10.1016/s0925-4439(00)00066-1
- Zhou X-Y, Morreau H, Rottier R, et al. Mouse model for the lysosomal disorder galactosialidosis and correction of the phenotype with overexpressing erythroid precursor cells. Genes Dev. 1995;9(21):2623–2634. doi: 10.1101/gad.9.21.2623
- Zhou X -Y, van der Spoel A, Rottier R, et al. Molecular and biochemical analysis of protective protein/cathepsin A mutations: correlation with clinical severity in galactosialidosis. Hum Mol Genet. 1996;5(12):1977–1987. doi: 10.1093/hmg/5.12.1977
补充文件
