Analysis of the COVID-19 epidemic: an additional narrative; an alternative response

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

According to the current prevailing narrative, the virus responsible for the COVID epidemic is exceptionally deadly and contagious – possibly as deadly, contagious and dangerous as the 1918 “Spanish flu” – and, in the absence of prolonged lockdown measures, has had the potential to kill a million or more people in the USA alone. At the other end of the explanatory spectrum a counter narrative has greatly minimized the threat posed by COVID and sees little need for major public health intervention or social change. A disciplined scientific analysis suggests an additional narrative that navigates a reasonable path between fear driven prescriptions and dismissive reassurance. This middle ground narrative suggests that the intrinsic deadliness of the COVID virus is above average when compared to many of the seasonal flu viruses of the past decade, but similar to that of the 2017–2018 flu virus, which killed an estimated 61,000 people in the USA. It also emphasizes that the intrinsic deadliness of many current social arrangements has contributed to “COVID deaths” and that there is need for major social change. This article suggests that neither the narrative of fear that prescribes excessive social control, or a narrative of dismissive reassurance that disregards need for fundamental social change, are based on good science. The article raises concerns that the prolonged lockdown/re-lockdown approach is misguided and likely to cause an enormous number of unnecessary deaths – both a greater number of cumulative COVID deaths, as well as “deaths of despair,” deaths from worsening poverty and hunger, and deaths from inadequate attention for non-COVID health issues, particularly in disadvantaged communities and countries. An alternative response to the COVID epidemic is presented.

About the authors

Robert Rennebohm

St. Petersburg State Pediatric Medical University, Ministry of Healthcare of the Russian Federation

Author for correspondence.
Email: rmrennebohm@gmail.com

MD, Visiting Professor. Department of Hospital Pediatrics

Russian Federation, Saint Petersburg

References

  1. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020. https://doi.org/10.1056/NEJMoa2015432.
  2. Agamanolis DP, Prayson RA, Asdaghi N, et al. Brain microvascular pathology in Susac syndrome: an electron microscopic study of five cases. Ultrastruct Pathol. 2019;43(6):229-236. https://doi.org/10.1080/01913123.2019.1692117.
  3. Axelrod J. CBS News, March 2, 2020: coronavirus may infect up to 70% of world’s population, expert warns. www.cbsne ws.com [Internet]. [cited 2020 Mar 4]. Available from: https://www.cbsne ws.com/news/coronavirus-infection-outbreak-worldwide-virus -expert-warning-today-2020-03-02/.
  4. Becker RC. COVID-19 update: Covid-19-associated coagulopathy. J Thromb Thrombolysis. 2020;50(1): 54-67. https://doi.org/10.1007/s11239-020-02134-3.
  5. Bhakdi S. Corona-Krise: Prof. Sucharit Bhakdi erklärt warum die Maßnahmen sinnlos und selbstzerstörerisch sind - YouTube. www.youtube.com [Internet]. [cited 2020 May 23]. Available from: https://www.youtube.com/watch?v=JBB9bA-gXL4.
  6. Bhakdi S. Doctor Sucharit Bhakdi Challenges the Coronavirus Crisis. newyorkcityguns.com [Internet]. [cited 2020 May 23]. Available from: https://newyorkcityguns.com/professor-doctor-sucharit-bhakdi-challenges-the-coronavirus-crisis/.
  7. Bhakdi S. Endless Corona Madness? A Talk with Prof. Dr. Sucharit Bhakdi - Servus TV. servustv.com [Internet]. [cited 2 May 2020]. Available from: https://www.servustv.com/videos/aa-23zjmvcz51w12/.
  8. Bhimraj A, Morgan RL, Shumaker AH, et al. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19. Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa478.
  9. Boom V, Anton J, Lahdenne P, et al. Evidence-based diagnosis and treatment of macrophage activation syndrome in systemic juvenile idiopathic arthritis. Pediatr Rheumatol Online J. 2015;13:55. https://doi.org/10.1186/s12969-015-0055-3.
  10. Capra R, De Rossi N, Mattioli F, et al. Impact of low dose tocilizumab on mortality rate in patients with COVID-19 related pneumonia. Eur J Intern Med. 2020;76:31-35. https://doi.org/10.1016/j.ejim.2020.05.009.
  11. Cavalli G, De Luca G, Campochiaro C, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020;2(6): e325-e331. https://doi.org/10.1016/s2665-9913(20)30127-2.
  12. CDC; 2020. CDC Estimated Influenza Illnesses, Medical visits, Hospitalizations, and Deaths in the United States – 2017–2018 influenza season. www.cdc.gov [Internet]. [cited 2020 May 23]. Available from: https://www.cdc.gov/flu/about/burden/2017-2018.htm.
  13. Coperchini F, Chiovato L, Croce L, et al. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020;53:25-32. https://doi.org/10.1016/j.cytogfr.2020.05.003.
  14. Diez JM, Romero C, Gajardo R. Currently available intravenous immunoglobulin contains antibodies reacting against severe acute respiratory syndrome coronavirus 2 antigens. Immunotherapy. 2020;12(8):571-576. https://doi.org/10.2217/imt-2020-0095.
  15. Rajgor DD, Lee MH, Archuleta S, et al. The many estimates of the COVID-19 case fatality rate. Lancet Infect Dis. 2020;20(7):776-777. https://doi.org/10.1016/s1473-3099(20)30244-9.
  16. Dong Y, Mo X, Hu Y, et al. Epidemiology of COVID-19 Among Children in China. Pediatrics. 2020;145(6). https://doi.org/10.1542/peds.2020-0702.
  17. Ferguson N. Fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf. imperial.ac.uk [Internet]. [cited 2020 May 23]. Available from: https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida.
  18. Ghebreyesus TA. who.int [Internet]. [cited 2020 May 23]. Available from: https://www.who.int/dg/speeches/detail/who-director-general-sopening-remarks-at-the-media-briefing-on-covid-19-3-March -2020/.
  19. Gieseke J. The Invisible Pandemic. The Lancet. 2020; May 5. Also, see the Chatham House Webinar: Weekly COVID-19 Pandemic Briefing - The Swedish Approach, an interview of Johan Giesecke. youtube.com [Internet]. [cited 2020 May 23]. Available from: https://www.youtube.com/watch?v=LAT66OjarGA.
  20. Goursaud S, Descamps R, Daubin C, et al. Corticosteroid use in selected patients with severe acute respiratory distress syndrome related to COVID-19. J Infect. 2020. https://doi.org/10.1016/j.jinf.2020.05.023.
  21. Gudbjartsson DF, Helgason A, Jonsson H, et al. Spread of SARS-CoV-2 in the Icelandic Population. N Engl J Med. 2020;382(24):2302-2315. https://doi.org/10.1056/NEJMoa2006100.
  22. He D, Zhao S, Lin Q, et al. The relative transmissibility of asymptomatic COVID-19 infections among close contacts. Int J Infect Dis. 2020;94:145-147. https://doi.org/10.1016/j.ijid.2020.04.034.
  23. Zeng H, Pappas C, Belser JA, et al. Human pulmonary microvascular endothelial cells support productive replication of highly pathogenic avian influenza viruses: possible involvement in the pathogenesis of human H5N1 virus infection. J Virol. 2012;86(2): 667-678. https://doi.org/10.1128/JVI.06348-11.
  24. Hung IF-N, Lung K-C, Tso EY-K, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020;395(10238):1695-1704. https://doi.org/10. 1016/s0140-6736(20)31042-4.
  25. Ioannidis JPA. Coronavirus disease 2019: The harms of exaggerated information and non-evidence-based measures. Eur J Clin Invest. 2020;50(4): e13222. https://doi.org/10.1111/eci.13222.
  26. medrxiv.org [Internet]. Ioannidis J. The infection fatality rate of COVID-19 inferred from seroprevalence data [cited 2020 May 23]. Available from: https://www.medrxiv.org/content/10.1101/2020.05.13.20101253v2.
  27. Keshavarz M, Namdari H, Farahmand M, et al. Association of polymorphisms in inflammatory cytokines encoding genes with severe cases of influenza A/H1N1 and B in an Iranian population. Virol J. 2019;16(1):79. https://doi.org/10.1186/s12985-019-1187-8.
  28. Liu L, Chu Y, Oza S, et al. National, regional, and state-level all-cause and cause-specific under-5 mortality in India in 2000-15: a systematic analysis with implications for the Sustainable Development Goals. Lancet Glob Health. 2019;7(6): e721-e734. https://doi.org/10.1016/S2214-109X(19)30080-4.
  29. Liu Y, Gayle AA, Wilder-Smith A, Rocklov J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med. 2020;27(2). https://doi.org/10.1093/jtm/taaa021.
  30. Magro G. SARS-CoV-2 and COVID-19: is interleukin-6 (IL-6) the ‘culprit lesion’ of ARDS onset? What is there besides Tocilizumab? SGP130Fc. Cytokine X. 2020:100029. https://doi.org/10.1016/j.cytox.2020.100029.
  31. Mehta P, Cron RQ, Hartwell J, et al. Silencing the cytokine storm: the use of intravenous anakinra in haemophagocytic lymphohistiocytosis or macrophage activation syndrome. Lancet Rheumatol. 2020;2(6): e358-e367. https://doi.org/10.1016/s2665-9913(20)30096-5.
  32. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-1034. https://doi.org/10.1016/s0140-6736(20)30628-0.
  33. Mein SA. COVID-19 and Health Disparities: the Reality of “the Great Equalizer”. J Gen Intern Med. 2020. https://doi.org/10.1007/s11606-020-05880-5.
  34. Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20(6):355-362. https://doi.org/10.1038/s41577-020-0331-4.
  35. Millett GA, Jones AT, Benkeser D, et al. Assessing Differential Impacts of COVID-19 on Black Communities. Ann Epidemiol. 2020. https://doi.org/10.1016/j.annepidem.2020.05.003.
  36. Nicastri E, Petrosillo N, Ascoli Bartoli T, et al. National Institute for the Infectious Diseases “L. Spallanzani”, IRCCS. Recommendations for COVID-19 clinical management. Infect Dis Rep. 2020;12(1):8543. https://doi.org/10.4081/idr.2020.8543.
  37. Nile SH, Nile A, Qiu J, et al. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev. 2020;53:66-70. https://doi.org/10.1016/j.cytogfr.2020.05.002.
  38. Poteat T, Millett G, Nelson LE, Beyrer C. Understanding COVID-19 Risks and Vulnerabilities among Black Communities in America: The Lethal Force of Syndemics. Ann Epidemiol. 2020. https://doi.org/10.1016/j.annepidem.2020.05.004.
  39. Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa248.
  40. Reynolds E. The world sacrificed its elderly in the race to protect hospitals. The result was a catastrophe in care homes - CNN. cnn.com [Internet]. [cited 2020 May 26]. Available from: https://www.cnn.com/2020/05/26/world/elderly-care-homes-coronavirus-intl/index.html.
  41. Robert Koch Institut. Bericht zur Epidemiologie der Influenza in Deutschland Saison 2017/18. Robert Koch-Institut; 2018. influenza.rki.de [Internet]. [cited 2020 May 26]. Available from: https://influenza.rki.de/Saisonberichte/2017.pdf.
  42. Qu R, Ling Y, Zhang YH, et al. Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19. J Med Virol. 2020. https://doi.org/10.1002/jmv.25767.
  43. Roussel Y, Giraud-Gatineau A, Jimeno M-T, et al. SARS-CoV-2: fear versus data. International Journal of Antimicrobial Agents. 2020 May; 55(5). https://doi.org/10.1016/j.ijantimicag.2020.105947.
  44. Roy A. Arundhati Roy on Indian Migrant-Worker Oppression and India’s Fateful COVID Crisis. counterpunch.org [Internet]. [cited 24 May 2020]. Available from: https://www.counterpunch.org/2020/05/29/arundhati-roy-on-indian-migrant-worker-oppression-and-indias-fateful-covid-crisis/.
  45. Saghazadeh A, Rezaei N. Towards treatment planning of COVID-19: Rationale and hypothesis for the use of multiple immunosuppressive agents: Anti-antibodies, immunoglobulins, and corticosteroids. Int Immunopharmacol. 2020;84:106560. https://doi.org/10.1016/j.intimp.2020.106560.
  46. Scott D. Coronavirus Case Fatality Rates in US and Singapore. vox.com [Internet]. [cited 24 May 2020]. Available from: https://www.vox.com/ 2020/5/20/21265194/coronavirus-deaths-us-singapore-case-fatality-rates.
  47. Shakoory B, Carcillo JA, Chatham WW, et al. Interleukin-1 Receptor Blockade Is Associated With Reduced Mortality in Sepsis Patients With Features of Macrophage Activation Syndrome: Reanalysis of a Prior Phase III Trial. Crit Care Med. 2016;44(2):275-281. https://doi.org/10.1097/CCM.0000000000001402.
  48. Shalhoub S. Interferon beta-1b for COVID-19. Lancet. 2020;395(10238):1670-1671. https://doi.org/ 10.1016/s0140-6736(20)31101-6.
  49. Shekerdemian LS, Mahmood NR, Wolfe KK, et al. Characteristics and Outcomes of Children With Coronavirus Disease 2019 (COVID-19) Infection Admitted to US and Canadian Pediatric Intensive Care Units. JAMA Pediatr. 2020. https://doi.org/10.1001/jamapediatrics.2020.1948.
  50. Yang S, Cao P, Du P, et al. Early estimation of the case fatality rate of COVID-19 in mainland China: a data-driven analysis. Ann Transl Med. 2020;8(4):128. https://doi.org/10.21037/atm.2020.02.66.
  51. Streeck H, Schulte B, Kuemmerer B, et al. Infection fatality rate of SARS-CoV-2 infection in a German community with a super-spreading event. medRxiv. 2020. https://doi.org/10.1101/2020.05.04.20090076.
  52. Swiss Propaganda Research. Studies on COVID-19 Lethality. globalresearch.ca [Internet]. [cited 2020 May 25]. Available from: https://www.globalresearch.ca/studies-covid-19-lethality/5713991.
  53. Tian S, Xiong Y, Liu H, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod Pathol. 2020;33(6):1007-1014. https://doi.org/10.1038/s41379-020-0536-x.
  54. Wohlfarth P, Agis H, Gualdoni GA, et al. Interleukin 1 Receptor Antagonist Anakinra, Intravenous Immunoglobulin, and Corticosteroids in the Management of Critically Ill Adult Patients with Hemophagocytic Lymphohistiocytosis. J Intensive Care Med. 2019;34(9):723-731. https://doi.org/10.1177/ 0885066617711386.
  55. Worldometer; 2020. worldometers.info [Internet]. [cited 2020 May 27]. Available from: https://www.worldometers.info/coronavirus/#countries.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Rennebohm R.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».