The role of exposome-specific risk factors in atopic dermatitis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article provides an overview of the latest concepts regarding the role of specific exposomal factors in atopic dermatitis in children and adults. As is known, specific factors include: air pollutants (external, internal), air humidity, metals, water hardness, detergents, pollen and other allergen, diet, human lifestyle factors. In this work, the main attention is paid to all the above factors, except for the role of allergy in the etiopathogenesis of atopic dermatitis (a separate publication will be devoted to this issue). Based on the data of systematic reviews, meta-analyses and recent studies, the role of specific factors is analyzed: air pollutants (external and indoor), diet for pregnant women and during lactation; various dietary supplements, etc. — in the development of atopic dermatitis. It is shown that these (and other exposomal) factors can also participate in the worsening of clinical manifestations of atopic dermatitis (for example, detergents). However, the leading role of any specific factor (factors) in the etiopathogenesis of atopic dermatitis (including allergies) has not been reliably proven to date. This also applies to nutritional factors (for example, adherence to a hypoallergenic diet by the mother during pregnancy and lactation, use of vitamin D and probiotics in the pre- and postnatal periods, etc.). In all likelihood, the external exposome is involved as a risk factor in the development of atopic dermatitis and worsening of the severity of the disease. Nevertheless, measures aimed at improving environmental factors can only be useful, especially in combination with anti-inflammatory drugs.

About the authors

Dali Sh. Macharadze

Gabrichevsky Research Institute of Epidemiology and Microbiology

Author for correspondence.
Email: dalim_a@mail.ru
ORCID iD: 0000-0001-5999-7085
SPIN-code: 2399-5783

MD, Dr. Sci. (Medicine)

Russian Federation, Moscow

Tatiana A. Ruzhentsova

Gabrichevsky Research Institute of Epidemiology and Microbiology; Moscow Medical University “Reaviz”

Email: ruzhencova@gmail.com
ORCID iD: 0000-0002-6945-2019
SPIN-code: 3685-2618

MD, Dr. Sci. (Medicine)

Russian Federation, Moscow; Moscow

Heda A. Janaeva

Chechen State University named after A.A. Kadyrov; Republican Skin and Venereological Dispensary

Email: heda-allergolog@mail.ru
ORCID iD: 0000-0003-0140-2303
SPIN-code: 9419-5672

MD, Cand. Sci. (Medicine)

Russian Federation, Grozny; Grozny

Natalia A. Meshkova

The Russian National Research Medical University named after N.I. Pirogov

Email: nataliaandreevnamesh@gmail.com
ORCID iD: 0000-0003-3904-7108
SPIN-code: 4337-6008

MD

Russian Federation, Moscow

Vladimir S. Malyshev

“Fides Lab”

Email: com.delafere@mail.ru
ORCID iD: 0009-0009-5351-4893

MD, Dr. Sci. (Biol.)

Russian Federation, Moscow

References

  1. Kantor R, Silverberg JI. Environmental risk factors and their role in the management of atopic dermatitis. Expert Rev Clin Immunol. 2017;13:1:15–26. doi: 10.1080/1744666X.2016.1212660
  2. Stefanovic N, Irvine A, Flohr C. The Role of the Environment and Exposome in Atopic Dermatitis. Curr Treat Options Allergy. 2021;8(3):222–241. doi: 10.1007/s40521-021-00289-9
  3. Grafanaki K, Antonatos C, Maniatis A, et al. Intrinsic Effects of Exposome in Atopic Dermatitis: Genomics, Epigenomics and Regulatory Layers. J Clin Med. 2023;12(12):4000. doi: 10.3390/jcm12124000
  4. Bieber T. Atopic dermatitis: an expanding therapeutic pipeline for a complex disease. Nat Rev Drug Discov. 2022;21(1):21–40. doi: 10.1038/s41573-021-00266-6
  5. Macharadze DSh, Rassanova EA, Ruzhentsova TA, et al. Role of nonspecific risk factors in atopic dermatitis. Allergology and Immunology in Paediatrics. 2024(1):5–11. doi. 10.53529/2500-1175-2024-1-5-11
  6. Fadadu R, Grimes B, Jewell N, et al. Association of Wildfire Air Pollution and Health Care Use for Atopic Dermatitis and Itch. JAMA Dermatol. 2021;157(6):658–666. doi: 10.1001/jamadermatol.2021.0179
  7. Ahn K. The role of air pollutants in atopic dermatitis. J Allergy Clin Immunol. 2014;134(5):993–999; discussion 1000. doi: 10.1016/j.jaci.2014.09.023
  8. Alkotob SS, Cannedy C, Harter K, et al. Advances and novel developments in environmental influences on the development of atopic diseases. Allergy. 2020;75(2):3077–3086. doi: 10.1111/all.14624
  9. Pan TL, Wang PW, Aljuffali I, et al. The impact of urban particulate pollution on skin barrier function and the subsequent drug absorption. J Dermatol Sci. 2015;78(1):51–60. doi: 10.1016/j.jdermsci.2015.01.011
  10. Tang KT, Ku KC, Chen D, et al. Adult atopic dermatitis and exposure to air pollutantsa nationwide population-based study. Ann Allergy Asthma Immunol. 2017;118(3):351–355. doi: 10.1016/j.anai.2016.12.005
  11. David Boothe W, Tarbox J, Tarbox M. Atopic Dermatitis: Pathophysiology. Adv Exp Med Biol. 2017;1027:21–37. doi: 10.1007/978-3-319-64804-0_3
  12. Yang SI, Lee SH, Lee SY. Prenatal PM2.5 exposure and vitamin D-associated early persistent atopic dermatitis via placental methylation. Ann Allergy Asthma Immunol. 2020;125(6):665–673.e1. doi: 10.1016/j.anai.2020.09.008
  13. Lee J-T, Cho Y-S, Son J-Y. Relationship between Ambient Ozone Concentrations and Daily Hospital Admissions for Childhood Asthma/Atopic Dermatitis in Two Cities of Korea during 2004–2005. Int J Environ Health Res. 2010;20:1–11. doi: 10.1080/09603120903254033
  14. Yi O, Kwon HJ, Kim H, et al. Effect of Environmental Tobacco Smoke on Atopic Dermatitis among Children in Korea. Environ Res. 2012;113:40–45. doi: 10.1016/j.envres.2011.12.012
  15. Morgenstern V, Zutavern A, Cyrys J, et al., GINI Study Group, LISA Study Group. Atopic diseases, allergic sensitization, and exposure to traffic-related air pollution in children. Am J Respir Crit Care Med. 2008;177(12):1331–1337. doi: 10.1164/rccm.200701-036OC
  16. Min K, Yi S, Kim H, et al. Association between exposure to traffic-related air pollution and pediatric allergic diseases based on modeled air pollution concentrations and traffic measures in Seoul, Korea: a comparative analysis. Environ Health. 2020;19:6. doi: 10.1186/s12940-020-0563-6
  17. Lee J, Ryu S, Lee G, Bae GN. Indoor-to-outdoor particle concentration ratio model for human exposure analysis. Atmos Environ. 2016;127:100–106. doi: 10.1016/j.atmosenv.2015.12.020
  18. Hendricks A, Eichenfield L, Shi VY. The impact of airborne pollution on atopic dermatitis: a literature review. Br J Dermatol. 2020;183(1):16–23. doi: 10.1111/bjd.18781
  19. Narla S, Silverberg JI. The Role of Environmental Exposures in Atopic Dermatitis. Curr Allergy Asthma Rep. 2020;20(12):74. doi: 10.1007/s11882-020-00971-z
  20. Bhuda M, Wichmann J, Shirinde J. Association between Outdoor and Indoor Air Pollution Sources and Atopic Eczema among Preschool Children in South Africa. Int J Environ Res Public Health. 2024;21(3):326. doi: 10.3390/ijerph21030326
  21. Winter M, Thürmann L, Gu Z, et al. The benzene metabolite 1,4-benzoquinone reduces regulatory T-cell function: A potential mechanism for tobacco smoke-associated atopic dermatitis. J Allergy Clin Immunol. 2017;140(2):603–605. doi: 10.1016/j.jaci.2017.01.034
  22. Кantor R, Kim A, Thyssen JP, Silverberg JI. Association of Atopic Dermatitis with Smoking: A Systematic Review and Meta-Analysis. J Am Acad Dermatol. 2016;75:1119–1125.e1. doi: 10.1016/j.jaad.2016.07.017
  23. Lau H, Lee J, Yap Q, et al. Smoke exposure and childhood atopic eczema and food allergy: A systematic review and meta-analysis. Pediatr Allergy Immunol. 2023;34(8):14010. doi: 10.1111/pai.14010
  24. Pilz AC, Schielein MC, Schuster B, et al. Atopic Dermatitis: Disease Characteristics and Comorbidities in Smoking and Non-smoking Patients from the TREATgermany Registry. Acad Derm Venereol. 2022;36:413–421. doi: 10.1111/jdv.17789
  25. Morra D, Cho E, Li T, et al. Smoking and Risk of Adult-Onset Atopic Dermatitis in US Women. J Am Acad Dermatol. 2021;84:561–563. doi: 10.1016/j.jaad.2020.07.077
  26. Pilz AC, Durner V, Schielein M, et al. Addictions in Patients with Atopic Dermatitis: A Cross-sectional Pilot Study in Germany. J Eur Acad Derm Venereol. 2022;36:84–90. doi: 10.1111/jdv.17708
  27. Arafune J, Tsujiguchi H, Hara A, et al. Increased Prevalence of Atopic Dermatitis in Children Aged 0–3 Years Highly Exposed to Parabens. Int J Environ Res Public Health. 2021;18:11657. doi: 10.3390/ijerph182111657
  28. von Holst H, Nayak P, Dembek Z, et al. Perfluoroalkyl Substances Exposure and Immunity, Allergic Response, Infection, and Asthma in Children: Review of Epidemiologic Studies. Heliyon. 2021;7(10):e08160. doi: 10.1016/j.heliyon.2021.e08160
  29. Tsai T-L, Wang S-L, Hsieh C-J, et al. TMICS Study Group Association between Prenatal Exposure to Metals and Atopic Dermatitis Among Children Aged 4 Years in Taiwan. JAMA Netw Open. 2021;4:e2131327. doi: 10.1001/jamanetworkopen.2021.31327
  30. Kathuria P, Silverberg JI. Association of Pollution and Climate with Atopic Eczema in US Children. Pediatr Allergy Immunol. 2016;27:478–485. doi: 10.1111/pai.12543
  31. Lee S, Park S, Park H, et al. Joint Association of Prenatal Bisphenol-A and Phthalates Exposure with Risk of Atopic Dermatitis in 6-Month-Old Infants. Sci Total Environ. 2021;789:147953. doi: 10.1016/j.scitotenv.2021.147953
  32. Xian M, Wawrzyniak P, Rückert B, et al. Anionic surfactants and commercial detergents decrease tight junction barrier integrity in human keratinocytes. J Allergy Clin Immunol. 2016;138:890–893.e899. doi: 10.1016/j.jaci.2016.07.003
  33. Kim Y, Kim J, Han Y, et al. Short-term effects of weather and air pollution on atopic dermatitis symptoms in children: A panel study in Korea. PLoS One. 2017;12(4):e0175229. doi: 10.1371/journal.pone.0175229
  34. Hamann C, Andersen Y, Engebretsen K, et al. The effects of season and weather on healthcare utilization among patients with atopic dermatitis. J Eur Acad Dermatology Venereol. 2018;32:1745–1753. doi: 10.1111/jdv.15023
  35. Jabbar-Lopez ZK, Craven J, Logan K, et al. Longitudinal analysis of the effect of water hardness on atopic eczema: evidence for gene–environment interaction. Br J Dermatol. 2020;183:285–293. doi: 10.1111/bjd.18597
  36. Miyake Y, Yokoyama T, Yura A, et al. Ecological association of water hardness with prevalence of childhood atopic dermatitis in a Japanese urban area. Environ Res. 2004;94(1):33–37. doi: 10.1016/s0013-9351(03)00068-9
  37. Chaumont A, Voisin C, Sardella A, Bernard A. Interactions between domestic water hardness, infant swimming and atopy in the development of childhood eczema. Environ Res. 2012;116:52–57. doi: 10.1016/j.envres.2012.04.013
  38. Thomas K, Dean T, O’Leary C, et al. A randomised controlled trial of ion-exchange water softeners for the treatment of eczema in children. PLoS Med. 2011;8:e1000395. doi: 10.1371/journal.pmed.1000395
  39. Kramer M, Kakuma R. Maternal dietary antigen avoidance during pregnancy or lactation, or both, for preventing or treating atopic disease in the child. Evid Based Child Health. 2014;9:447–483. doi: 10.1002/ebch.1972
  40. Venter C, Agostoni C, Arshad S, et al. Dietary factors during pregnancy and atopic outcomes in childhood: a systematic review from the European Academy of Allergy and Clinical Immunology. Pediatr Allergy Immunol. 2020;31:889–912. doi: 10.1111/pai.13303
  41. Trikamjee T, Comberiati P, D’Auria E, et al. Nutritional Factors in the Prevention of Atopic Dermatitis in Children. Front Pediatr. 2021;8:577413. doi: 10.3389/fped.2020.577413
  42. Donovan S, Dewey K, Novotny R, et al. Maternal Diet during Pregnancy and Lactation and Risk of Child Food Allergies and Atopic Allergic Diseases: A Systematic Review [Internet]. Alexandria (VA): USDA Nutrition Evidence Systematic Review. 2020. PMID: 35289989. doi: 10.52570/NESR.DGAC2020.SR0207
  43. Thyssen JP, Zirwas MJ, Elias PM. Potential Role of Reduced Environmental UV Exposure as a Driver of the Current Epidemic of Atopic Dermatitis. J Allergy Clin Immunol. 2015;136:1163–1169. doi: 10.1016/j.jaci.2015.06.042
  44. Hyppönen E, Sovio U, Wjst M, et al. Infant vitamin d supplementation and allergic conditions in adulthood: northern Finland birth cohort 1966. Ann N Y Acad Sci. 2004;1037:84–95. doi: 10.1196/annals.1337.013
  45. Bäck O, Blomquist H, Hernell O, Stenberg B. Does vitamin D intake during infancy promote the development of atopic allergy? Acta Derm Venereol. 2009;89(1):28–32. doi: 10.2340/00015555-0541
  46. Wang S, Yin P, Yu L, et al. Effects of Early Diet on the Prevalence of Allergic Disease in Children: A Systematic Review and Meta-Analysis. Adv Nutr. 2024;15(1):100128. doi: 10.1016/j.advnut.2023.10.001
  47. Makrgeorgou A, Leonardi-Bee J, Bath-Hextall F, et al. Probiotics for treating eczema. Cochrane Database Syst Rev. 2018;11CD006135. doi: 10.1002/14651858.CD006135.pub3
  48. Amalia N, Orchard D, Francis KL, King E. Systematic Review and Meta-analysis on the Use of Probiotic Supplementation in Pregnant Mother, Breastfeeding Mother and Infant for the Prevention of Atopic Dermatitis in Children. Australas J Derm. 2020;61:628–643. doi: 10.1111/ajd.13186
  49. Richards M, Ferber J, Chen H, et al. Caesarean delivery and the risk of atopic dermatitis in children. Clin Exp Allergy. 2020;50(7):805–814. doi: 10.1111/cea.13668
  50. Flohr C, Nagel G, Weinmayr G, et al. Lack of evidence for a protective effect of prolonged breastfeeding on childhood eczema: lessons from the international study of asthma and allergies in childhood (ISAAC) phase two. Br J Dermatol. 2011;165:1280–1289. doi: 10.1111/j.1365-2133.2011.10588.x
  51. Osborn DA, Sinn JK, Jones LJ. Infant formulas containing hydrolysed protein for prevention of allergic disease. Cochrane Database Syst Rev. Oct 19;10(10):CD003664. doi: 10.1002/14651858.CD003664.pub6
  52. Boyle RJ, Tang ML, Chiang WC., et al. Prebiotic-supplemented partially hydrolysed cow’s milk formula for the prevention of eczema in high-risk infants: a randomized controlled trial. Allergy. 2016;71(5):701–110. doi. 10.1111/all.12848
  53. Park S, Choi HS, Bae JH. Instant noodles, processed food intake, and dietary pattern are associated with atopic dermatitis in an adult population (KNHANES 2009–2011). Asia Pac J Clin Nutr. 2016;25(3):602–613. doi: 10.6133/apjcn.092015.23

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 PH “ABV-Press”

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».