Airborne particulate matter as drivers of airway inflammation in T2-endotype asthma
- Authors: Khakimova M.R.1, Skorokhodkina O.V.1
-
Affiliations:
- Kazan State Medical University
- Issue: Vol 22, No 4 (2025)
- Pages: 388-396
- Section: Reviews
- URL: https://journal-vniispk.ru/raj/article/view/375446
- DOI: https://doi.org/10.36691/RJA17046
- EDN: https://elibrary.ru/NZUYOS
- ID: 375446
Cite item
Abstract
The paper presents the modern concept of airway inflammation formation in T2 endotype asthma under the exposure to ambient air particulate matter (PM). It was shown that PM exposure leads to disruption of the epithelial barrier integrity and epithelial cells damage, triggering the alarmins production with subsequent activation of dendritic cells, Th2 lymphocytes, and/or type 2 innate lymphoid cells. The role of PM in eosinophilic inflammation in both allergic and non-allergic asthma phenotypes was highlighted. Moreover, evidence suggests that PM may modify the structure and activity of certain aeroallergens. Furthermore, a correlation was demonstrated between PM concentrations and asthma incidence. Prenatal PM exposure leads to increased risk for childhood asthma. An association was found between PM concentration and disease progression, exacerbation frequency, and emergency care visits.
The results of experimental, epidemiological, and clinical data show the significant role of PM in driving airway inflammation in the T2-endotype asthma. This highlights the need for further research to develop preventive strategies and novel therapeutic approaches.
About the authors
Milyausha R. Khakimova
Kazan State Medical University
Author for correspondence.
Email: mileushe7@gmail.com
ORCID iD: 0000-0002-3533-2596
SPIN-code: 1875-3934
MD, Cand. Sci. (Medicine)
Russian Federation, KazanOlesya V. Skorokhodkina
Kazan State Medical University
Email: Olesya-27@rambler.ru
ORCID iD: 0000-0001-5793-5753
SPIN-code: 8649-6138
MD, Dr. Sci. (Medicine), Professor
Russian Federation, KazanReferences
- Pat Y, Yazici D, D’Avino P, et al. Recent advances in the epithelial barrier theory. Int Immunol. 2024;36(5):211–222. doi: 10.1093/intimm/dxae002 EDN: ETNNPZ
- World Health Organization. The Global Health Observatory [Internet]. WHO [cited 27 July 2025]. Available from: https://www.who.int/data/gho/data/themes/air-pollution
- Diao P, He H, Tang J, et al. Natural compounds protect the skin from airborne particulate matter by attenuating oxidative stress. Biomed Pharmacother. 2021;138:111534. doi: 10.1016/j.biopha.2021.111534 EDN: LKMBXJ
- Wang X, Dickinson RE, Su L, et al. PM2.5 pollution in China and how it has been exacerbated by terrain and meteorological conditions. Bull Am Meteorol Soc. 2018;99(1):105–119. doi: 10.1175/BAMS-D-16-0301.1 EDN: YGAJJJ
- Wang F, Liu J, Zeng H. Interactions of particulate matter and pulmonary surfactant: Implications for human health. Adv Colloid Interface Sci. 2020;284:102244. doi: 10.1016/j.cis.2020.102244 EDN: VRWVXZ
- Shaddick G, Thomas ML, Mudu P, et al. Half the world’s population are exposed to increasing air pollution. NPJ Clim Atmos Sci. 2020;3(1):23. doi: 10.1038/s41612-020-0124-2 EDN: FKBAVK
- Bronte-Moreno O, González-Barcala FJ, Muñoz-Gall X, et al. Impact of air pollution on asthma: a scoping review. Open Respir Arch. 2023;5(2):100229. doi: 10.1016/j.opresp.2022.100229 EDN: RFZXTA
- Guo H, Chen M. Short-term effect of air pollution on asthma patient visits in Shanghai area and assessment of economic costs. Ecotoxicol Environ Saf. 2018;161:184–189. doi: 10.1016/j.ecoenv.2018.05.089
- Клинические рекомендации. Бронхиальная астма. 2025. Режим доступа: https://cr.minzdrav.gov.ru/preview-cr/359_3 Дата обращения: 27.07.2025
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention [Internet] [cited 27 July 2025]. Available from: https://ginasthma.org/
- Nenasheva NM. T2-bronchial asthma: Characteristics of the endotype and biomarkers. PULMONOLOGIYA. 2019;29(2):216–228. (In Russ.) doi: 10.18093/0869-0189-2019-29-2-216-228 EDN: DWUTWL
- Hammad H, Lambrecht BN. Barrier epithelial cells and the control of type 2 immunity. Immunity. 2015;43(1):29–40. doi: 10.1016/j.immuni.2015.07.007
- Akdis CA, Arkwright PD, Brüggen MC, et al. Type 2 immunity in the skin and lungs. Allergy. 2020;75(7):1582–1605. doi: 10.1111/all.14318 EDN: UGRREQ
- Pelaia C, Crimi C, Vatrella A, et al. Molecular targets for biological therapies of severe asthma. Front Immunol. 2020;11:603312. doi: 10.3389/fimmu.2020.603312 EDN: RLSIBN
- Yang Y, Jia M, Ou Y, et al. Mechanisms and biomarkers of airway epithelial cell damage in asthma: a review. Clin Respir J. 2021;15(10):1027–1045. doi: 10.1111/crj.13407 EDN: GOUKSB
- Dyneva ME, Aminova GE, Kurbacheva OM, Ilina NI. Dupilumab: new opportunities in the treatment of bronchial asthma and polypoid rhinosinusitis. Russian Journal of Allergy. 2021;18(1):18–31. (In Russ.) doi: 10.36691/RJA1408 EDN: WOHTPQ
- Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol 2015;16(1):45–56. doi: 10.1038/ni.3049.
- Piao CH, Fan Y, Nguyen TV, et al. PM2.5 exposure regulates Th1/Th2/Th17 cytokine production through NF-κB signaling in combined allergic rhinitis and asthma syndrome. Int Immunopharmacol. 2023;119:110254. doi: 10.1016/j.intimp.2023.110254 EDN: AHSLHP
- Воздействие взвешенных частиц на здоровье. Значение для разработки политики в странах Восточной Европы, Кавказа и Центральной Азии. Всемирная организация здравоохранения. Европейское региональное бюро. Режим доступа: https://iris.who.int/bitstream/handle/10665/344855/9789289000062-rus.pdf Дата обращения: 27.07.2025
- Zhang L, Ou C, Magana-Arachchi D, et al. Indoor particulate matter in urban households: sources, pathways, characteristics, health effects, and exposure mitigation. Int J Environ Res Public Health. 2021;18(21):11055. doi: 10.3390/ijerph182111055 EDN: KRBTZA
- Чомаева М.Н. Промышленная пыль как вредный производственный фактор // Национальная безопасность и стратегическое планирование. 2015. Т. 10, № 2–1. С. 119–122. EDN: TXMYID
- Arias-Pérez RD, Taborda NA, Gómez DM, et al. Inflammatory effects of particulate matter air pollution. Environ Sci Pollut Res. 2020;27(34):42390–42404. doi: 10.1007/s11356-020-10574-w EDN: JNTSYC
- Baldacci S, Maio S, Cerrai S, et al. Allergy and asthma: effects of the exposure to particulate matter and biological allergens. Respir Med. 2015;109(9):1089–1104. doi: 10.1016/j.rmed.2015.05.017 EDN: VEQQJN
- Revich BA. Fine suspended particulates in ambient air and their health effects in megalopolises. Environmental Monitoring and Ecosystem Modelling. 2018;29(3):53–78. (In Russ.) doi: 10.21513/0207-2564-2018-3-53-78 EDN: YRXUVF
- Schraufnagel DE. The health effects of ultrafine particles. Exp Mol Med. 2020;52(3):311–317. doi: 10.1038/s12276-020-0403-3 EDN: XNDYKT
- Chen C, Liu S, Dong W, et al. Increasing cardiopulmonary effects of ultrafine particles at relatively low fine particle concentrations. Sci Total Environ. 2021;751:141726. doi: 10.1016/j.scitotenv.2020.141726 EDN: EZVQOT
- Hameed S, Pan K, Su W, et al. Label-free detection and quantification of ultrafine particulate matter in lung and heart of mouse and evaluation of tissue injury. Part Fibre Toxicol. 2022;19(1):51. doi: 10.1186/s12989-022-00493-8 EDN: SJYLLZ
- Wang L, Luo D, Liu X, et al. Effects of PM2.5 exposure on reproductive system and its mechanisms. Chemosphere. 2021;264:128436. doi: 10.1016/j.chemosphere.2020.128436 EDN: XVUBCJ
- Li T, Yu Y, Sun Z, Duan J. A comprehensive understanding of ambient particulate matter and its components on the adverse health effects based from epidemiological and laboratory evidence. Part Fibre Toxicol. 2022;19(1):67. doi: 10.1186/s12989-022-00507-5 EDN: ODGEBO
- Wei H, Feng Y, Liang F, et al. Role of oxidative stress and DNA hydroxymethylation in the neurotoxicity of fine particulate matter. Toxicology. 2017;380:94–103. doi: 10.1016/j.tox.2017.01.017
- Ruiz-Gil T, Acuña JJ, Fujiyoshi S, et al. Airborne bacterial communities of outdoor environments and their associated influencing factors. Environ Int. 2020;145:106156. doi: 10.1016/j.envint.2020.106156 EDN: TLLOYQ
- Góralska K, Lis S, Gawor W, et al. Culturable filamentous fungi in the air of recreational areas and their relationship with bacteria and air pollutants during winter. Atmosphere. 2022;13(2):207. doi: 10.3390/atmos13020207 EDN: SHXQGW
- Lim JM, Jeong JH, Lee JH, et al. The analysis of PM2.5 and associated elements and their indoor/outdoor pollution status in an urban area. Indoor Air. 2011;21(2):145–155. doi: 10.1111/j.1600-0668.2010.00691.x
- Lu S, Luan Q, Jiao Z, et al. Mineralogy of inhalable particulate matter (PM10) in the atmosphere of Beijing, China. Water Air Soil Pollut. 2007;186(1):129–137. doi: 10.1007/s11270-007-9470-5 EDN: MUKFOY
- Adams K, Greenbaum DS, Shaikh R, et al. Particulate matter components, sources, and health: systematic approaches to testing effects. J Air Waste Manag Assoc. 2015;65(5):544–558. doi: 10.1080/10962247.2014.1001884
- Nghiem TD, Nguyen TTT, Nguyen TTH, et al. Chemical characterization and source apportionment of ambient nanoparticles: a case study in Hanoi, Vietnam. Environ Sci Pollut Res Int. 2020;27(24):30661–30672. doi: 10.1007/s11356-020-09417-5 EDN: QRQPDO
- Olesiejuk K, Chałubiński M. How does particulate air pollution affect barrier functions and inflammatory activity of lung vascular endothelium? Allergy. 2023;78(3):629–638. doi: 10.1111/all.15630 EDN: YVAZES
- Moreno-Ríos AL, Tejeda-Benítez LP, Bustillo-Lecompte CF. Sources, characteristics, toxicity, and control of ultrafine particles: an overview. Geosci Front. 2022;13(1):101147. doi: 10.1016/j.gsf.2021.101147 EDN: LXENKO
- Agache I, Sampath V, Aguilera J, et al. Climate change and global health: a call to more research and more action. Allergy. 2022;77(5):1389–1407. doi: 10.1111/all.15229 EDN: UQMYVR
- Eguiluz-Gracia I, Mathioudakis AG, Bartel S, et al. The need for clean air: the way air pollution and climate change affect allergic rhinitis and asthma. Allergy. 2020;75(9):2170–2184. doi: 10.1111/all.14177 EDN: SUZZZW
- Anenberg SC, Henze DK, Tinney V, et al. Estimates of the global burden of ambient PM2.5, ozone, and NO2 on asthma incidence and emergency room visits. Environ Health Perspect. 2018;126(10):107004. doi: 10.1289/EHP3766 EDN: GJCRIM
- Motta AC, Marliere M, Peltre G, et al. Traffic-related air pollutants induce the release of allergen-containing cytoplasmic granules from grass pollen. Int Arch Allergy Immunol. 2006;139(4):294–298. doi: 10.1159/000091600
- Sedghy F, Varasteh AR, Sankian M, Moghadam M. Interaction between air pollutants and pollen grains: the role on the rising trend in allergy. Rep Biochem Mol Biol. 2018;6(2):219–224.
- Cakmak S, Dales RE, Coates F. Does air pollution increase the effect of aeroallergens on hospitalization for asthma? J Allergy Clin Immunol. 2012;129(1):228–231. doi: 10.1016/j.jaci.2011.09.025
- He M, Ichinose T, Ren Y, et al. PM2.5-rich dust collected from the air in Fukuoka, Kyushu, Japan, can exacerbate murine lung eosinophilia. Inhal Toxicol. 2015;27(6):287–299. doi: 10.3109/08958378.2015.1045051
- World Health Organization. WHO Global Ambient Air Quality Database (update 2018) [Internet] [cited 27 July 2025]. Available from: https://www.who.int/data/gho/data/themes/air-pollution/who-air-quality-database/2018
- Санитарные правила и нормы СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания». Режим доступа: https://www.rospotrebnadzor.ru/files/news/GN_sreda%20_obitaniya_compressed.pdf Дата обращения: 27.07.2025
- IQAir. Очистители воздуха и мониторы качества воздуха для более чистого и здорового воздуха. Режим доступа: https://www.iqair.com/ru/ Дата обращения: 05.07.2025
- Galitskaya MA, Kurbacheva OM. The modern view of the role of innate and adaptive immunity in bronchial asthma. Russian Journal of Allergy. 2018;15(6):7–17. (In Russ.) doi: 10.36691/RJA87 EDN: POCSMN
- Dornhof R, Maschowski C, Osipova A, et al. Stress fibers, autophagy and necrosis by persistent exposure to PM2.5 from biomass combustion. PLoS One 2017;12(7):e0180291. doi: 10.1371/journal.pone.0180291 EDN: YGLAME
- Georas SN, Rezaee F. Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation. J Allergy Clin Immunol. 2014;134(3):509–520. doi: 10.1016/j.jaci.2014.05.049
- Takizawa R, Pawankar R, Yamagishi S, et al. Increased expression of HLA-DR and CD86 in nasal epithelial cells in allergic rhinitics: antigen presentation to T cells and up-regulation by diesel exhaust particles. Clin Exp Allergy. 2007;37(3):420–433. doi: 10.1111/j.1365-2222.2007.02672.x
- Zhao YX, Zhang HR, Yang XN, et al. Fine particulate matter-induced exacerbation of allergic asthma via activation of T-cell immunoglobulin and mucin domain 1. Chin Med J (Engl). 2018;131(20):2461–2473. doi: 10.4103/0366-6999.243551
- Lakey PS, Berkemeier T, Tong H, et al. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Sci Rep. 2016;6:32916. doi: 10.1038/srep32916 EDN: XUHZFT
- Lu X, Li R, Yan X. Airway hyperresponsiveness development and the toxicity of PM2.5. Environ Sci Pollut Res Int. 2021;28(6):6374–6391. doi: 10.1007/s11356-020-12051-w EDN: NVCWRJ
- Stanek LW, Brown JS, Stanek J, et al. Air pollution toxicology — a brief review of the role of the science in shaping the current understanding of air pollution health risks. Toxicol Sci. 2011;120(Suppl)1:S8–27. doi: 10.1093/toxsci/kfq367
- Cooper DM, Loxham M. Particulate matter and the airway epithelium: the special case of the underground? Eur Respir Rev. 2019;28(153):190066. doi: 10.1183/16000617.0066-2019
- Bayram H, Devalia JL, Sapsford RJ, et al. The effect of diesel exhaust particles on cell function and release of inflammatory mediators from human bronchial epithelial cells in vitro. Am J Respir Cell Mol Biol. 1998;18(3):441–448. doi: 10.1165/ajrcmb.18.3.2882
- Heijink I, van Oosterhout A, Kliphuis N, et al. Oxidant-induced corticosteroid unresponsiveness in human bronchial epithelial cells. Thorax. 2014;69(1):5–13. doi: 10.1136/thoraxjnl-2013-203520
- Glencross DA, Ho TR, Camiña N, et al. Air pollution and its effects on the immune system. Free Radic Biol Med. 2020;151:56–68. doi: 10.1016/j.freeradbiomed.2020.01.179 EDN: YHBTES
- Matta BM, Reichenbach DK, Blazar BR, Turnquist HR. Alarmins and their receptors as modulators and indicators of alloimmune responses. Am J Transplant. 2017;17(2):320–327. doi: 10.1111/ajt.13887
- Borowczyk J, Shutova M, Brembilla NC, Boehncke WH. IL-25 (IL-17E) in epithelial immunology and pathophysiology. J Allergy Clin Immunol. 2021;148(1):40–52. doi: 10.1016/j.jaci.2020.12.628 EDN: BZXMGZ
- Fort MM, Cheung J, Yen D, et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity. 2001;15(6):985–995. doi: 10.1016/S1074-7613(01)00243-6
- Xu M, Dong C. IL-25 in allergic inflammation. Immunol Rev. 2017;278(1):185–191. doi: 10.1111/imr.12558
- Yao XJ, Liu XF, Wang XD. Potential role of interleukin-25/interleukin-33/thymic stromal lymphopoietin-fibrocyte axis in the pathogenesis of allergic airway diseases. Chin Med J (Engl). 2018;131(16):1983–1989. doi: 10.4103/0366-6999.238150
- Whetstone CE, Ranjbar M, Omer H, et al. The role of airway epithelial cell alarmins in asthma. Cells. 2022;11(7):1105. doi: 10.3390/cells11071105 EDN: UAQQQZ
- Tamachi T, Maezawa Y, Ikeda K, et al. IL-25 enhances allergic airway inflammation by amplifying a TH2 cell-dependent pathway in mice. J Allergy Clin Immunol. 2006;118(3):606–614. doi: 10.1016/j.jaci.2006.04.051
- Cayrol C. IL-33, an alarmin of the IL-1 family involved in allergic and non allergic inflammation: focus on the mechanisms of regulation of its activity. Cells. 2021;11(1):107. doi: 10.3390/cells11010107 EDN: GGPEGQ
- Chan BCL, Lam CWK, Tam LS, Wong CK. IL33: roles in allergic inflammation and therapeutic perspectives. Front Immunol. 2019;10:364. doi: 10.3389/fimmu.2019.00364 EDN: DWGRAF
- Cayrol C, Girard JP. Interleukin-33 (IL-33): a critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine. Cytokine. 2022;156:155891. doi: 10.1016/j.cyto.2022.155891 EDN: SWFIYS
- Kaur D, Gomez E, Doe C, et al. IL-33 drives airway hyper-responsiveness through IL-13-mediated mast cell: airway smooth muscle crosstalk. Allergy. 2015;70(5):556–567. doi: 10.1111/all.12593 EDN: UALIPP
- Christianson CA, Goplen NP, Zafar I, et al. Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33. J Allergy Clin Immunol. 2015;136(1):59–68.e14. doi: 10.1016/j.jaci.2014.11.037
- Симбирцев А.С. Цитокины в патогенезе и лечении заболеваний человека. СПб: Фолиант, 2018. 512 с. ISBN 978-5-93929-283-2 EDN: XIZEJB
- Rochman Y, Dienger-Stambaugh K, Richgels PK, et al. TSLP signaling in CD4+ T cells programs a pathogenic T helper 2 cell state. Sci Signal. 2018;11(521):eaam8858. doi: 10.1126/scisignal.aam8858
- Corren J, Ziegler SF. TSLP: from allergy to cancer. Nat Immunol. 2019;20(12):1603–1609. doi: 10.1038/s41590-019-0524-9
- Bartemes KR, Kephart GM, Fox SJ, Kita H. Enhanced innate type 2 immune response in peripheral blood from patients with asthma. J Allergy Clin Immunol. 2014;134(3):671–678.e4. doi: 10.1016/j.jaci.2014.06.024
- Gauvreau GM, Sehmi R, Ambrose CS, Griffiths JM. Thymic stromal lymphopoietin: its role and potential as a therapeutic target in asthma. Expert Opin Ther Targets. 2020;24(8):777–792. doi: 10.1080/14728222.2020.1783242 EDN: NDLFHL
- Thurston GD, Balmes JR, Garcia E, et al. Outdoor air pollution and new-onset airway disease. An Official American Thoracic Society Workshop report. Ann Am Thorac Soc. 2020;17(4):387–398. doi: 10.1513/AnnalsATS.202001-046ST EDN: ZXUJSK
- Khreis H, Kelly C, Tate J, et al. Exposure to traffic-related air pollution and risk of development of childhood asthma: a systematic review and meta-analysis. Environ Int. 2017;100:1–31. doi: 10.1016/j.envint.2016.11.012 EDN: MGRMVR
- Bowatte G, Lodge C, Lowe AJ, et al. The influence of childhood traffic-related air pollution exposure on asthma, allergy and sensitization: a systematic review and a meta-analysis of birth cohort studies. Allergy. 2015;70(3):245–256. doi: 10.1111/all.12561 EDN: XYVPKL
- Xu M, Shao M, Chen Y, Liu C. Early life exposure to particulate matter and childhood asthma in Beijing, China: a case-control study. Int J Environ Health Res. 2024;34(1):526–534. doi: 10.1080/09603123.2022.2154327
- Ke X, Liu S, Wang X, et al. Association of exposure to ambient particulate matter with asthma in children: systematic review and meta-analysis. Allergy Asthma Proc. 2025;46(2):e43–e60. doi: 10.2500/aap.2025.46.240115 EDN: QHWJZX
- Gehring U, Wijga AH, Koppelman GH, et al. Air pollution and the development of asthma from birth until young adulthood. Eur Respir J. 2020;56(1):2000147. doi: 10.1183/13993003.00147-2020 EDN: DCLTWS
- To T, Zhu J, Stieb D, et al. Early life exposure to air pollution and incidence of childhood asthma, allergic rhinitis and eczema. Eur Respir J. 2020;55(2):1900913. doi: 10.1183/13993003.00913-2019
- Agache I, Annesi-Maesano I, Cecchi L, et al. EAACI guidelines on environmental science for allergy and asthma: the impact of short-term exposure to outdoor air pollutants on asthma-related outcomes and recommendations for mitigation measures. Allergy. 2024;79(7):1656–1686. doi: 10.1111/all.16103 EDN: YFMBSK
- Romieu I, Meneses F, Ruiz S, et al. Effects of air pollution on the respiratory health of asthmatic children living in Mexico City. Am J Respir Crit Care Med. 1996;154(2):300–307. doi: 10.1164/ajrccm.154.2.8756798
- Fan J, Li S, Fan C, et al. The impact of PM2.5 on asthma emergency department visits: a systematic review and meta-analysis. Environ Sci Pollut Res. 2016;23(1):843–850. doi: 10.1007/s11356-015-5321-x EDN: WTGTAN
- Zhao N, Liu Y, Vanos JK, Cao G. Day-of-week and seasonal patterns of PM2.5 concentrations over the United States: time-series analyses using the Prophet procedure. Atmos Environ. 2018;192:116–127. doi: 10.1016/j.atmosenv.2018.08.050
- Dixon PG, Allen M, Gosling SN, et al. Perspectives on the synoptic climate classification and its role in interdisciplinary research. Geogr Compass. 2016;10(4):147–164. doi: 10.1111/gec3.12264
- Greene JS, Kalkstein LS, Ye H, Smoyer K. Relationships between synoptic climatology and atmospheric pollution at 4 US cities. Theor Appl Climatol. 1999;62(3–4):163–174. doi: 10.1007/s007040050081 EDN: AWJEWH
- Wang J, Ogawa S. Effects of meteorological conditions on PM2.5 concentrations in Nagasaki, Japan. Int J Environ Res Public Health. 2015;12(8):9089–9101. doi: 10.3390/ijerph120809089
- Li Y, Wang W, Kan H, et al. Air quality and outpatient visits for asthma in adults during the 2008 Summer Olympic Games in Beijing. Sci Total Environ. 2010;408(5):1226–1227. doi: 10.1016/j.scitotenv.2009.11.035
Supplementary files

