Airborne particulate matter as drivers of airway inflammation in T2-endotype asthma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the modern concept of airway inflammation formation in T2 endotype asthma under the exposure to ambient air particulate matter (PM). It was shown that PM exposure leads to disruption of the epithelial barrier integrity and epithelial cells damage, triggering the alarmins production with subsequent activation of dendritic cells, Th2 lymphocytes, and/or type 2 innate lymphoid cells. The role of PM in eosinophilic inflammation in both allergic and non-allergic asthma phenotypes was highlighted. Moreover, evidence suggests that PM may modify the structure and activity of certain aeroallergens. Furthermore, a correlation was demonstrated between PM concentrations and asthma incidence. Prenatal PM exposure leads to increased risk for childhood asthma. An association was found between PM concentration and disease progression, exacerbation frequency, and emergency care visits.

The results of experimental, epidemiological, and clinical data show the significant role of PM in driving airway inflammation in the T2-endotype asthma. This highlights the need for further research to develop preventive strategies and novel therapeutic approaches.

About the authors

Milyausha R. Khakimova

Kazan State Medical University

Author for correspondence.
Email: mileushe7@gmail.com
ORCID iD: 0000-0002-3533-2596
SPIN-code: 1875-3934

MD, Cand. Sci. (Medicine)

Russian Federation, Kazan

Olesya V. Skorokhodkina

Kazan State Medical University

Email: Olesya-27@rambler.ru
ORCID iD: 0000-0001-5793-5753
SPIN-code: 8649-6138

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Kazan

References

  1. Pat Y, Yazici D, D’Avino P, et al. Recent advances in the epithelial barrier theory. Int Immunol. 2024;36(5):211–222. doi: 10.1093/intimm/dxae002 EDN: ETNNPZ
  2. World Health Organization. The Global Health Observatory [Internet]. WHO [cited 27 July 2025]. Available from: https://www.who.int/data/gho/data/themes/air-pollution
  3. Diao P, He H, Tang J, et al. Natural compounds protect the skin from airborne particulate matter by attenuating oxidative stress. Biomed Pharmacother. 2021;138:111534. doi: 10.1016/j.biopha.2021.111534 EDN: LKMBXJ
  4. Wang X, Dickinson RE, Su L, et al. PM2.5 pollution in China and how it has been exacerbated by terrain and meteorological conditions. Bull Am Meteorol Soc. 2018;99(1):105–119. doi: 10.1175/BAMS-D-16-0301.1 EDN: YGAJJJ
  5. Wang F, Liu J, Zeng H. Interactions of particulate matter and pulmonary surfactant: Implications for human health. Adv Colloid Interface Sci. 2020;284:102244. doi: 10.1016/j.cis.2020.102244 EDN: VRWVXZ
  6. Shaddick G, Thomas ML, Mudu P, et al. Half the world’s population are exposed to increasing air pollution. NPJ Clim Atmos Sci. 2020;3(1):23. doi: 10.1038/s41612-020-0124-2 EDN: FKBAVK
  7. Bronte-Moreno O, González-Barcala FJ, Muñoz-Gall X, et al. Impact of air pollution on asthma: a scoping review. Open Respir Arch. 2023;5(2):100229. doi: 10.1016/j.opresp.2022.100229 EDN: RFZXTA
  8. Guo H, Chen M. Short-term effect of air pollution on asthma patient visits in Shanghai area and assessment of economic costs. Ecotoxicol Environ Saf. 2018;161:184–189. doi: 10.1016/j.ecoenv.2018.05.089
  9. Клинические рекомендации. Бронхиальная астма. 2025. Режим доступа: https://cr.minzdrav.gov.ru/preview-cr/359_3 Дата обращения: 27.07.2025
  10. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention [Internet] [cited 27 July 2025]. Available from: https://ginasthma.org/
  11. Nenasheva NM. T2-bronchial asthma: Characteristics of the endotype and biomarkers. PULMONOLOGIYA. 2019;29(2):216–228. (In Russ.) doi: 10.18093/0869-0189-2019-29-2-216-228 EDN: DWUTWL
  12. Hammad H, Lambrecht BN. Barrier epithelial cells and the control of type 2 immunity. Immunity. 2015;43(1):29–40. doi: 10.1016/j.immuni.2015.07.007
  13. Akdis CA, Arkwright PD, Brüggen MC, et al. Type 2 immunity in the skin and lungs. Allergy. 2020;75(7):1582–1605. doi: 10.1111/all.14318 EDN: UGRREQ
  14. Pelaia C, Crimi C, Vatrella A, et al. Molecular targets for biological therapies of severe asthma. Front Immunol. 2020;11:603312. doi: 10.3389/fimmu.2020.603312 EDN: RLSIBN
  15. Yang Y, Jia M, Ou Y, et al. Mechanisms and biomarkers of airway epithelial cell damage in asthma: a review. Clin Respir J. 2021;15(10):1027–1045. doi: 10.1111/crj.13407 EDN: GOUKSB
  16. Dyneva ME, Aminova GE, Kurbacheva OM, Ilina NI. Dupilumab: new opportunities in the treatment of bronchial asthma and polypoid rhinosinusitis. Russian Journal of Allergy. 2021;18(1):18–31. (In Russ.) doi: 10.36691/RJA1408 EDN: WOHTPQ
  17. Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol 2015;16(1):45–56. doi: 10.1038/ni.3049.
  18. Piao CH, Fan Y, Nguyen TV, et al. PM2.5 exposure regulates Th1/Th2/Th17 cytokine production through NF-κB signaling in combined allergic rhinitis and asthma syndrome. Int Immunopharmacol. 2023;119:110254. doi: 10.1016/j.intimp.2023.110254 EDN: AHSLHP
  19. Воздействие взвешенных частиц на здоровье. Значение для разработки политики в странах Восточной Европы, Кавказа и Центральной Азии. Всемирная организация здравоохранения. Европейское региональное бюро. Режим доступа: https://iris.who.int/bitstream/handle/10665/344855/9789289000062-rus.pdf Дата обращения: 27.07.2025
  20. Zhang L, Ou C, Magana-Arachchi D, et al. Indoor particulate matter in urban households: sources, pathways, characteristics, health effects, and exposure mitigation. Int J Environ Res Public Health. 2021;18(21):11055. doi: 10.3390/ijerph182111055 EDN: KRBTZA
  21. Чомаева М.Н. Промышленная пыль как вредный производственный фактор // Национальная безопасность и стратегическое планирование. 2015. Т. 10, № 2–1. С. 119–122. EDN: TXMYID
  22. Arias-Pérez RD, Taborda NA, Gómez DM, et al. Inflammatory effects of particulate matter air pollution. Environ Sci Pollut Res. 2020;27(34):42390–42404. doi: 10.1007/s11356-020-10574-w EDN: JNTSYC
  23. Baldacci S, Maio S, Cerrai S, et al. Allergy and asthma: effects of the exposure to particulate matter and biological allergens. Respir Med. 2015;109(9):1089–1104. doi: 10.1016/j.rmed.2015.05.017 EDN: VEQQJN
  24. Revich BA. Fine suspended particulates in ambient air and their health effects in megalopolises. Environmental Monitoring and Ecosystem Modelling. 2018;29(3):53–78. (In Russ.) doi: 10.21513/0207-2564-2018-3-53-78 EDN: YRXUVF
  25. Schraufnagel DE. The health effects of ultrafine particles. Exp Mol Med. 2020;52(3):311–317. doi: 10.1038/s12276-020-0403-3 EDN: XNDYKT
  26. Chen C, Liu S, Dong W, et al. Increasing cardiopulmonary effects of ultrafine particles at relatively low fine particle concentrations. Sci Total Environ. 2021;751:141726. doi: 10.1016/j.scitotenv.2020.141726 EDN: EZVQOT
  27. Hameed S, Pan K, Su W, et al. Label-free detection and quantification of ultrafine particulate matter in lung and heart of mouse and evaluation of tissue injury. Part Fibre Toxicol. 2022;19(1):51. doi: 10.1186/s12989-022-00493-8 EDN: SJYLLZ
  28. Wang L, Luo D, Liu X, et al. Effects of PM2.5 exposure on reproductive system and its mechanisms. Chemosphere. 2021;264:128436. doi: 10.1016/j.chemosphere.2020.128436 EDN: XVUBCJ
  29. Li T, Yu Y, Sun Z, Duan J. A comprehensive understanding of ambient particulate matter and its components on the adverse health effects based from epidemiological and laboratory evidence. Part Fibre Toxicol. 2022;19(1):67. doi: 10.1186/s12989-022-00507-5 EDN: ODGEBO
  30. Wei H, Feng Y, Liang F, et al. Role of oxidative stress and DNA hydroxymethylation in the neurotoxicity of fine particulate matter. Toxicology. 2017;380:94–103. doi: 10.1016/j.tox.2017.01.017
  31. Ruiz-Gil T, Acuña JJ, Fujiyoshi S, et al. Airborne bacterial communities of outdoor environments and their associated influencing factors. Environ Int. 2020;145:106156. doi: 10.1016/j.envint.2020.106156 EDN: TLLOYQ
  32. Góralska K, Lis S, Gawor W, et al. Culturable filamentous fungi in the air of recreational areas and their relationship with bacteria and air pollutants during winter. Atmosphere. 2022;13(2):207. doi: 10.3390/atmos13020207 EDN: SHXQGW
  33. Lim JM, Jeong JH, Lee JH, et al. The analysis of PM2.5 and associated elements and their indoor/outdoor pollution status in an urban area. Indoor Air. 2011;21(2):145–155. doi: 10.1111/j.1600-0668.2010.00691.x
  34. Lu S, Luan Q, Jiao Z, et al. Mineralogy of inhalable particulate matter (PM10) in the atmosphere of Beijing, China. Water Air Soil Pollut. 2007;186(1):129–137. doi: 10.1007/s11270-007-9470-5 EDN: MUKFOY
  35. Adams K, Greenbaum DS, Shaikh R, et al. Particulate matter components, sources, and health: systematic approaches to testing effects. J Air Waste Manag Assoc. 2015;65(5):544–558. doi: 10.1080/10962247.2014.1001884
  36. Nghiem TD, Nguyen TTT, Nguyen TTH, et al. Chemical characterization and source apportionment of ambient nanoparticles: a case study in Hanoi, Vietnam. Environ Sci Pollut Res Int. 2020;27(24):30661–30672. doi: 10.1007/s11356-020-09417-5 EDN: QRQPDO
  37. Olesiejuk K, Chałubiński M. How does particulate air pollution affect barrier functions and inflammatory activity of lung vascular endothelium? Allergy. 2023;78(3):629–638. doi: 10.1111/all.15630 EDN: YVAZES
  38. Moreno-Ríos AL, Tejeda-Benítez LP, Bustillo-Lecompte CF. Sources, characteristics, toxicity, and control of ultrafine particles: an overview. Geosci Front. 2022;13(1):101147. doi: 10.1016/j.gsf.2021.101147 EDN: LXENKO
  39. Agache I, Sampath V, Aguilera J, et al. Climate change and global health: a call to more research and more action. Allergy. 2022;77(5):1389–1407. doi: 10.1111/all.15229 EDN: UQMYVR
  40. Eguiluz-Gracia I, Mathioudakis AG, Bartel S, et al. The need for clean air: the way air pollution and climate change affect allergic rhinitis and asthma. Allergy. 2020;75(9):2170–2184. doi: 10.1111/all.14177 EDN: SUZZZW
  41. Anenberg SC, Henze DK, Tinney V, et al. Estimates of the global burden of ambient PM2.5, ozone, and NO2 on asthma incidence and emergency room visits. Environ Health Perspect. 2018;126(10):107004. doi: 10.1289/EHP3766 EDN: GJCRIM
  42. Motta AC, Marliere M, Peltre G, et al. Traffic-related air pollutants induce the release of allergen-containing cytoplasmic granules from grass pollen. Int Arch Allergy Immunol. 2006;139(4):294–298. doi: 10.1159/000091600
  43. Sedghy F, Varasteh AR, Sankian M, Moghadam M. Interaction between air pollutants and pollen grains: the role on the rising trend in allergy. Rep Biochem Mol Biol. 2018;6(2):219–224.
  44. Cakmak S, Dales RE, Coates F. Does air pollution increase the effect of aeroallergens on hospitalization for asthma? J Allergy Clin Immunol. 2012;129(1):228–231. doi: 10.1016/j.jaci.2011.09.025
  45. He M, Ichinose T, Ren Y, et al. PM2.5-rich dust collected from the air in Fukuoka, Kyushu, Japan, can exacerbate murine lung eosinophilia. Inhal Toxicol. 2015;27(6):287–299. doi: 10.3109/08958378.2015.1045051
  46. World Health Organization. WHO Global Ambient Air Quality Database (update 2018) [Internet] [cited 27 July 2025]. Available from: https://www.who.int/data/gho/data/themes/air-pollution/who-air-quality-database/2018
  47. Санитарные правила и нормы СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания». Режим доступа: https://www.rospotrebnadzor.ru/files/news/GN_sreda%20_obitaniya_compressed.pdf Дата обращения: 27.07.2025
  48. IQAir. Очистители воздуха и мониторы качества воздуха для более чистого и здорового воздуха. Режим доступа: https://www.iqair.com/ru/ Дата обращения: 05.07.2025
  49. Galitskaya MA, Kurbacheva OM. The modern view of the role of innate and adaptive immunity in bronchial asthma. Russian Journal of Allergy. 2018;15(6):7–17. (In Russ.) doi: 10.36691/RJA87 EDN: POCSMN
  50. Dornhof R, Maschowski C, Osipova A, et al. Stress fibers, autophagy and necrosis by persistent exposure to PM2.5 from biomass combustion. PLoS One 2017;12(7):e0180291. doi: 10.1371/journal.pone.0180291 EDN: YGLAME
  51. Georas SN, Rezaee F. Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation. J Allergy Clin Immunol. 2014;134(3):509–520. doi: 10.1016/j.jaci.2014.05.049
  52. Takizawa R, Pawankar R, Yamagishi S, et al. Increased expression of HLA-DR and CD86 in nasal epithelial cells in allergic rhinitics: antigen presentation to T cells and up-regulation by diesel exhaust particles. Clin Exp Allergy. 2007;37(3):420–433. doi: 10.1111/j.1365-2222.2007.02672.x
  53. Zhao YX, Zhang HR, Yang XN, et al. Fine particulate matter-induced exacerbation of allergic asthma via activation of T-cell immunoglobulin and mucin domain 1. Chin Med J (Engl). 2018;131(20):2461–2473. doi: 10.4103/0366-6999.243551
  54. Lakey PS, Berkemeier T, Tong H, et al. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Sci Rep. 2016;6:32916. doi: 10.1038/srep32916 EDN: XUHZFT
  55. Lu X, Li R, Yan X. Airway hyperresponsiveness development and the toxicity of PM2.5. Environ Sci Pollut Res Int. 2021;28(6):6374–6391. doi: 10.1007/s11356-020-12051-w EDN: NVCWRJ
  56. Stanek LW, Brown JS, Stanek J, et al. Air pollution toxicology — a brief review of the role of the science in shaping the current understanding of air pollution health risks. Toxicol Sci. 2011;120(Suppl)1:S8–27. doi: 10.1093/toxsci/kfq367
  57. Cooper DM, Loxham M. Particulate matter and the airway epithelium: the special case of the underground? Eur Respir Rev. 2019;28(153):190066. doi: 10.1183/16000617.0066-2019
  58. Bayram H, Devalia JL, Sapsford RJ, et al. The effect of diesel exhaust particles on cell function and release of inflammatory mediators from human bronchial epithelial cells in vitro. Am J Respir Cell Mol Biol. 1998;18(3):441–448. doi: 10.1165/ajrcmb.18.3.2882
  59. Heijink I, van Oosterhout A, Kliphuis N, et al. Oxidant-induced corticosteroid unresponsiveness in human bronchial epithelial cells. Thorax. 2014;69(1):5–13. doi: 10.1136/thoraxjnl-2013-203520
  60. Glencross DA, Ho TR, Camiña N, et al. Air pollution and its effects on the immune system. Free Radic Biol Med. 2020;151:56–68. doi: 10.1016/j.freeradbiomed.2020.01.179 EDN: YHBTES
  61. Matta BM, Reichenbach DK, Blazar BR, Turnquist HR. Alarmins and their receptors as modulators and indicators of alloimmune responses. Am J Transplant. 2017;17(2):320–327. doi: 10.1111/ajt.13887
  62. Borowczyk J, Shutova M, Brembilla NC, Boehncke WH. IL-25 (IL-17E) in epithelial immunology and pathophysiology. J Allergy Clin Immunol. 2021;148(1):40–52. doi: 10.1016/j.jaci.2020.12.628 EDN: BZXMGZ
  63. Fort MM, Cheung J, Yen D, et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity. 2001;15(6):985–995. doi: 10.1016/S1074-7613(01)00243-6
  64. Xu M, Dong C. IL-25 in allergic inflammation. Immunol Rev. 2017;278(1):185–191. doi: 10.1111/imr.12558
  65. Yao XJ, Liu XF, Wang XD. Potential role of interleukin-25/interleukin-33/thymic stromal lymphopoietin-fibrocyte axis in the pathogenesis of allergic airway diseases. Chin Med J (Engl). 2018;131(16):1983–1989. doi: 10.4103/0366-6999.238150
  66. Whetstone CE, Ranjbar M, Omer H, et al. The role of airway epithelial cell alarmins in asthma. Cells. 2022;11(7):1105. doi: 10.3390/cells11071105 EDN: UAQQQZ
  67. Tamachi T, Maezawa Y, Ikeda K, et al. IL-25 enhances allergic airway inflammation by amplifying a TH2 cell-dependent pathway in mice. J Allergy Clin Immunol. 2006;118(3):606–614. doi: 10.1016/j.jaci.2006.04.051
  68. Cayrol C. IL-33, an alarmin of the IL-1 family involved in allergic and non allergic inflammation: focus on the mechanisms of regulation of its activity. Cells. 2021;11(1):107. doi: 10.3390/cells11010107 EDN: GGPEGQ
  69. Chan BCL, Lam CWK, Tam LS, Wong CK. IL33: roles in allergic inflammation and therapeutic perspectives. Front Immunol. 2019;10:364. doi: 10.3389/fimmu.2019.00364 EDN: DWGRAF
  70. Cayrol C, Girard JP. Interleukin-33 (IL-33): a critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine. Cytokine. 2022;156:155891. doi: 10.1016/j.cyto.2022.155891 EDN: SWFIYS
  71. Kaur D, Gomez E, Doe C, et al. IL-33 drives airway hyper-responsiveness through IL-13-mediated mast cell: airway smooth muscle crosstalk. Allergy. 2015;70(5):556–567. doi: 10.1111/all.12593 EDN: UALIPP
  72. Christianson CA, Goplen NP, Zafar I, et al. Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33. J Allergy Clin Immunol. 2015;136(1):59–68.e14. doi: 10.1016/j.jaci.2014.11.037
  73. Симбирцев А.С. Цитокины в патогенезе и лечении заболеваний человека. СПб: Фолиант, 2018. 512 с. ISBN 978-5-93929-283-2 EDN: XIZEJB
  74. Rochman Y, Dienger-Stambaugh K, Richgels PK, et al. TSLP signaling in CD4+ T cells programs a pathogenic T helper 2 cell state. Sci Signal. 2018;11(521):eaam8858. doi: 10.1126/scisignal.aam8858
  75. Corren J, Ziegler SF. TSLP: from allergy to cancer. Nat Immunol. 2019;20(12):1603–1609. doi: 10.1038/s41590-019-0524-9
  76. Bartemes KR, Kephart GM, Fox SJ, Kita H. Enhanced innate type 2 immune response in peripheral blood from patients with asthma. J Allergy Clin Immunol. 2014;134(3):671–678.e4. doi: 10.1016/j.jaci.2014.06.024
  77. Gauvreau GM, Sehmi R, Ambrose CS, Griffiths JM. Thymic stromal lymphopoietin: its role and potential as a therapeutic target in asthma. Expert Opin Ther Targets. 2020;24(8):777–792. doi: 10.1080/14728222.2020.1783242 EDN: NDLFHL
  78. Thurston GD, Balmes JR, Garcia E, et al. Outdoor air pollution and new-onset airway disease. An Official American Thoracic Society Workshop report. Ann Am Thorac Soc. 2020;17(4):387–398. doi: 10.1513/AnnalsATS.202001-046ST EDN: ZXUJSK
  79. Khreis H, Kelly C, Tate J, et al. Exposure to traffic-related air pollution and risk of development of childhood asthma: a systematic review and meta-analysis. Environ Int. 2017;100:1–31. doi: 10.1016/j.envint.2016.11.012 EDN: MGRMVR
  80. Bowatte G, Lodge C, Lowe AJ, et al. The influence of childhood traffic-related air pollution exposure on asthma, allergy and sensitization: a systematic review and a meta-analysis of birth cohort studies. Allergy. 2015;70(3):245–256. doi: 10.1111/all.12561 EDN: XYVPKL
  81. Xu M, Shao M, Chen Y, Liu C. Early life exposure to particulate matter and childhood asthma in Beijing, China: a case-control study. Int J Environ Health Res. 2024;34(1):526–534. doi: 10.1080/09603123.2022.2154327
  82. Ke X, Liu S, Wang X, et al. Association of exposure to ambient particulate matter with asthma in children: systematic review and meta-analysis. Allergy Asthma Proc. 2025;46(2):e43–e60. doi: 10.2500/aap.2025.46.240115 EDN: QHWJZX
  83. Gehring U, Wijga AH, Koppelman GH, et al. Air pollution and the development of asthma from birth until young adulthood. Eur Respir J. 2020;56(1):2000147. doi: 10.1183/13993003.00147-2020 EDN: DCLTWS
  84. To T, Zhu J, Stieb D, et al. Early life exposure to air pollution and incidence of childhood asthma, allergic rhinitis and eczema. Eur Respir J. 2020;55(2):1900913. doi: 10.1183/13993003.00913-2019
  85. Agache I, Annesi-Maesano I, Cecchi L, et al. EAACI guidelines on environmental science for allergy and asthma: the impact of short-term exposure to outdoor air pollutants on asthma-related outcomes and recommendations for mitigation measures. Allergy. 2024;79(7):1656–1686. doi: 10.1111/all.16103 EDN: YFMBSK
  86. Romieu I, Meneses F, Ruiz S, et al. Effects of air pollution on the respiratory health of asthmatic children living in Mexico City. Am J Respir Crit Care Med. 1996;154(2):300–307. doi: 10.1164/ajrccm.154.2.8756798
  87. Fan J, Li S, Fan C, et al. The impact of PM2.5 on asthma emergency department visits: a systematic review and meta-analysis. Environ Sci Pollut Res. 2016;23(1):843–850. doi: 10.1007/s11356-015-5321-x EDN: WTGTAN
  88. Zhao N, Liu Y, Vanos JK, Cao G. Day-of-week and seasonal patterns of PM2.5 concentrations over the United States: time-series analyses using the Prophet procedure. Atmos Environ. 2018;192:116–127. doi: 10.1016/j.atmosenv.2018.08.050
  89. Dixon PG, Allen M, Gosling SN, et al. Perspectives on the synoptic climate classification and its role in interdisciplinary research. Geogr Compass. 2016;10(4):147–164. doi: 10.1111/gec3.12264
  90. Greene JS, Kalkstein LS, Ye H, Smoyer K. Relationships between synoptic climatology and atmospheric pollution at 4 US cities. Theor Appl Climatol. 1999;62(3–4):163–174. doi: 10.1007/s007040050081 EDN: AWJEWH
  91. Wang J, Ogawa S. Effects of meteorological conditions on PM2.5 concentrations in Nagasaki, Japan. Int J Environ Res Public Health. 2015;12(8):9089–9101. doi: 10.3390/ijerph120809089
  92. Li Y, Wang W, Kan H, et al. Air quality and outpatient visits for asthma in adults during the 2008 Summer Olympic Games in Beijing. Sci Total Environ. 2010;408(5):1226–1227. doi: 10.1016/j.scitotenv.2009.11.035

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 ABV-press

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).