Hereditary angioedema: modern approaches to modeling, diagnostics and therapy
- Authors: Parshina V.A.1,2, Koloskova O.O.1, Khodzhava M.V.1,2, Latysheva E.A.1, Shershakova N.N.1,2, Khaitov M.R.1,2,3
-
Affiliations:
- National Research Center – Institute of Immunology Federal Medical-Biological Agency
- Center for genetic reprogramming and gene therapy, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
- The Russian National Research Medical University named after N.I. Pirogov
- Issue: Vol 22, No 4 (2025)
- Pages: 397-410
- Section: Reviews
- URL: https://journal-vniispk.ru/raj/article/view/375447
- DOI: https://doi.org/10.36691/RJA17058
- EDN: https://elibrary.ru/OBKLOS
- ID: 375447
Cite item
Abstract
Hereditary angioedema is a rare but potentially life-threatening disease characterized by episodic swelling due to excessive bradykinin production.
This review discusses the main pathogenetic mechanisms of the disease and analyzes the main differences between types of hereditary angioedema with C1-inhibitor deficiency (types I and II) and with normal C1-inhibitor levels. The paper summarizes and systematizes the main biomarkers with diagnostic significance for hereditary angioedema, including the level and functional activity of C1-inhibitor, the concentration of complement system components (C4, C1r, C1s), as well as molecular genetic markers that allow verifying the disease type. Modern therapeutic strategies are presented, focusing both on the rapid relief of acute attacks using drugs that target the kallikrein-kinin system, and on preventive approaches that reduce the frequency, severity, and duration of recurrences. An important part of the review is the analysis of existing in vitro and in vivo models of hereditary angioedema, including cell systems and transgenic animal models used for the preclinical evaluation of the efficacy and safety of new therapeutic agents, as well as for a deeper understanding of the molecular and cellular mechanisms underlying the disease.
The presented analysis highlights the importance of integrating fundamental and applied research to develop personalized approaches for hereditary angioedema management and to improve patient prognosis.
Keywords
About the authors
Veronika A. Parshina
National Research Center – Institute of Immunology Federal Medical-Biological Agency; Center for genetic reprogramming and gene therapy, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
Author for correspondence.
Email: parshina.nicka@yandex.ru
ORCID iD: 0009-0001-7678-2489
SPIN-code: 1883-8361
Russian Federation, Moscow; Moscow
Olesya O. Koloskova
National Research Center – Institute of Immunology Federal Medical-Biological Agency
Email: oo.koloskova@nrcii.ru
ORCID iD: 0000-0003-3949-8582
SPIN-code: 1493-1160
MD, Cand. Sci. (Biology)
Russian Federation, MoscowMaria V. Khodzhava
National Research Center – Institute of Immunology Federal Medical-Biological Agency; Center for genetic reprogramming and gene therapy, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
Email: mchernobaeva@mail.ru
ORCID iD: 0009-0005-5140-1554
SPIN-code: 3046-8033
MD, Cand. Sci. (Pharmacy)
Russian Federation, Moscow; MoscowElena A. Latysheva
National Research Center – Institute of Immunology Federal Medical-Biological Agency
Email: ealat@mail.ru
ORCID iD: 0000-0002-1606-205X
SPIN-code: 2063-7973
MD, Dr. Sci. (Medicine)
Russian Federation, MoscowNadezda N. Shershakova
National Research Center – Institute of Immunology Federal Medical-Biological Agency; Center for genetic reprogramming and gene therapy, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
Email: nn.shershakova@nrcii.ru
ORCID iD: 0000-0001-6444-6499
SPIN-code: 7555-5925
MD, Dr. Sci (Biology)
Russian Federation, Moscow; MoscowMusa R. Khaitov
National Research Center – Institute of Immunology Federal Medical-Biological Agency; Center for genetic reprogramming and gene therapy, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency; The Russian National Research Medical University named after N.I. Pirogov
Email: mr.khaitov@nrcii.ru
ORCID iD: 0000-0003-4961-9640
SPIN-code: 3199-9803
д-р мед. наук, профессор, академик РАН
Russian Federation, Moscow; Moscow; MoscowReferences
- Zuraw BL. Clinical practice. Hereditary angioedema. N Engl J Med. 2008;359(10):1027–1036. doi: 10.1056/NEJMcp0803977
- Ritter AMV, Silva S, de Paula R, et al. A real-world study of hereditary angioedema patients due to C1 inhibitor deficiency treated with danazol in the Brazilian Public Health System. Front Med. 2024;11:1343547. doi: 10.3389/fmed.2024.1343547 EDN: IZJJGN
- Santacroce R, D’Andrea G, Maffione AB, et al. The genetics of hereditary angioedema: a review. J Clin Med. 2021;10(9):2023. doi: 10.3390/jcm10092023 EDN: WUSGVC
- The US Hereditary Angioedema Association. Available from: https://www.haea.org/pages/p/what_is_hae
- Министерство здравоохранения Российской Федерации. Наследственный ангиоотек. Клинические рекомендации. Режим доступа: https://cr.minzdrav.gov.ru/view-cr/267_2
- Ghazi A, Grant JA. Hereditary angioedema: epidemiology, management, and role of icatibant. Biologics. 2013;7:103–113. doi: 10.2147/BTT.S27566
- Tutunaru CV, Ică OM, Mitroi GG, et al. Unveiling the complexities of hereditary angioedema. Biomolecules. 2024;14(10):1298. doi: 10.3390/biom14101298 EDN: MVOSRY
- Longhurst H, Cicardi M. Hereditary angio-oedema. Lancet. 2012;379(9814):474–481. doi: 10.1016/S0140-6736(11)60935-5
- Sinnathamby ES, Issa PP, Roberts L, et al. Hereditary angioedema: diagnosis, clinical implications, and pathophysiology. Adv Ther. 2023;40(3):814–827. doi: 10.1007/s12325-022-02401-0 EDN: RKZMPM
- Bork K, Aygören-Pürsün E, Bas M, et al. Guideline: hereditary angioedema due to C1 inhibitor deficiency. Allergo J Int. 2019;28(1):16–29. doi: 10.1007/s40629-018-0088-5 EDN: HZCBIR
- Germenis AE, Speletas M. Genetics of hereditary angioedema revisited. Clin Rev Allergy Immunol. 2016;51(2):170–182. doi: 10.1007/s12016–016–8543-x EDN: KUOZTQ
- Gooptu B, Lomas DA. Conformational pathology of the serpins: themes, variations, and therapeutic strategies. Annu Rev Biochem. 2009;78:147–176. doi: 10.1146/annurev.biochem.78.082107.133320 EDN: LNSLPB
- Guryanova I. Congenital angioedema: molecular basis of formation, mechanisms of development, features of clinical manifestations, pathogenetic therapy. Laboratory Diagnostics. Eastern Europe. 2021;10(4). (In Russ.) doi: 10.34883/PI.2021.10.4.011 EDN: CERWMH
- Maurer M, Magerl M, Betschel S, et al. The international WAO/EAACI guideline for the management of hereditary angioedema — the 2021 revision and update. Allergy. 2022;77(7):1961–1990. doi: 10.1111/all.15214 EDN: FOPZTW
- Lacuesta G, Betschel SD, Tsai E, Kim H. Angioedema. Allergy Asthma Clin Immunol. 2024;20(Suppl 3):65. doi: 10.1186/s13223-024-00934-3 EDN: FEFCSI
- Bors A, Csuka D, Varga L, et al. Less severe clinical manifestations in patients with hereditary angioedema with missense C1INH gene mutations. J Allergy Clin Immunol. 2013;131(6):1708–1711. doi: 10.1016/j.jaci.2012.11.015
- Simonovic I, Patston, PA. The native metastable fold of C1-inhibitor is stabilized by disulfide bonds. Biochim Biophys Acta. 2000;1481(1):97–102. doi: 10.1016/S0167-4838(00)00115-1 EDN: AICXRJ
- Verpy E, Couture-Tosi E, Eldering E, et al. Crucial residues in the carboxy-terminal end of C1 inhibitor revealed by pathogenic mutants impaired in secretion or function. J Clin Invest. 1995;95(1):350–359. doi: 10.1172/jci117663
- Vatsiou S, Zamanakou M, Loules G, et al. A novel deep intronic SERPING1 variant as a cause of hereditary angioedema due to C1-inhibitor deficiency. Allergol Int. 2020;69(3):443–449. doi: 10.1016/j.alit.2019.12.009 EDN: KUZMZM
- Hujová P, Souček P, Grodecká L, et al. Deep intronic mutation in SERPING1 caused hereditary angioedema through pseudoexon activation. J Clin Immunol. 2020;40(3):435–446. doi: 10.1007/s10875-020-00753-2 EDN: OGXHKI
- Banday AZ, Kaur A, Jindal AK, et al. An update on the genetics and pathogenesis of hereditary angioedema. Genes Dis. 2019;7(1):75–83. doi: 10.1016/j.gendis.2019.07.002 EDN: KUQLJU
- Chen LM, Chung P, Chao S, et al. Differential regulation of kininogen gene expression by estrogen and progesterone in vivo. Biochim Biophys Acta. 1992;1131(2):145–151. doi: 10.1016/0167-4781(92)90069-c
- Madeddu P, Emanueli C, Song Q, et al. Regulation of bradykinin B2-receptor expression by oestrogen. Br J Pharmacol. 1997;121(8):1763–1769. doi: 10.1038/sj.bjp.0701255
- Zhang Y, Tortorici MA, Pawaskar D, et al. Exposure-response model of subcutaneous C1-inhibitor concentrate to estimate the risk of attacks in patients with hereditary angioedema. CPT Pharmacometrics Syst Pharmacol. 2018;7(3): 158–165. doi: 10.1002/psp4.12271
- Dewald G, Bork K. Missense mutations in the coagulation factor XII (Hageman factor) gene in hereditary angioedema with normal C1 inhibitor. Biochem Biophys Res Commun. 2006;343(4):1286–1289. doi: 10.1016/j.bbrc.2006.03.092
- Bork K, Gül D, Hardt J, Dewald G. Hereditary angioedema with normal C1 inhibitor: clinical symptoms and course. Am J Med. 2007;120(11):987–992. doi: 10.1016/j.amjmed.2007.08.021
- Bork K, Wulff K, Steinmüller-Magin L, et al. Hereditary angioedema with a mutation in the plasminogen gene. Allergy. 2018;73(2):442–450. doi: 10.1111/all.13270 EDN: YCXAOD
- Dewald G. A missense mutation in the plasminogen gene, within the plasminogen kringle 3 domain, in hereditary angioedema with normal C1 inhibitor. Biochem Biophys Res Commun. 2018;498(1):193–198. doi: 10.1016/j.bbrc.2017.12.060
- Bafunno V, Firinu D, D’Apolito M, et al. Mutation of the angiopoietin-1 gene (ANGPT1) associates with a new type of hereditary angioedema. J Allergy Clin Immunol. 2018;141(3):1009–1017. doi: 10.1016/j.jaci.2017.05.020
- D’Apolito M, Santacroce R, Colia AL, et al. Angiopoietin-1 haploinsufficiency affects the endothelial barrier and causes hereditary angioedema. Clin Exp Allergy. 2019;49(5):626–635. doi: 10.1111/cea.13349
- Cagini N, Lopez Veronez C, Franca Azevedo B, et al. In silico analysis of alterations in ANGPT1 gene supports a new pathway responsible to mediate hereditary angioedema in Brazilian patients with no mutations in SERPING1 and F12 genes. J Allergy Clin Immunol. 2018;141(2):AB46. doi: 10.1016/j.jaci.2017.12.150
- Bork K, Wulff K, Rossmann H, et al. Hereditary angioedema cosegregating with a novel kininogen 1 gene mutation changing the N-terminal cleavage site of bradykinin. Allergy. 2019;74(12):2479–2481. doi: 10.1111/all.13869
- Ariano A, D’Apolito M, Bova M, et al. A myoferlin gain-of-function variant associates with a new type of hereditary angioedema. Allergy. 2020; 75(11):2989–2992. doi: 10.1111/all.14454 EDN: PJRHIB
- Bork K, Wulff K, Möhl BS, et al. Novel hereditary angioedema linked with a heparan sulfate 3-O-sulfotransferase 6 gene mutation. J Allergy Clin Immunol. 2021;148(4):1041–1048. doi: 10.1016/j.jaci.2021.01.011 EDN: AMMMOR
- D’Apolito M, Santacroce R, Vazquez DO, et al. DAB2IP associates with hereditary angioedema: insights into the role of VEGF signaling in HAE pathophysiology. J Allergy Clin Immunol. 2024;154(3):698–706. doi: 10.1016/j.jaci.2024.05.017 EDN: FCOXFK
- Vincent D, Parsopoulou F, Martin L, et al. Hereditary angioedema with normal C1 inhibitor associated with carboxypeptidase N deficiency. J Allergy Clin Immunol Glob. 2024;3(2):100223. doi: 10.1016/j.jacig.2024.100223 EDN: OTAVGB
- Porebski G, Kwitniewski M, Reshef A. Biomarkers in hereditary angioedema. Clin Rev Allergy Immunol. 2021;60(3):404–415. doi: 10.1007/s12016-021-08845-6 EDN: NOMJCU
- Csuka D, Füst G, Farkas H, Varga L. Parameters of the classical complement pathway predict disease severity in hereditary angioedema. Clin Immunol. 2011;139(1):85–93. doi: 10.1016/j.clim.2011.01.003
- Germenis AE, Cicardi M. Driving towards precision medicine for angioedema without wheals. J Autoimmun. 2019;104:102312. doi: 10.1016/j.jaut.2019.102312
- Betschel S, Badiou J, Binkley K, et al. Correction to: The International/Canadian Hereditary Angioedema Guideline. Allergy Asthma Clin Immunol. 2020;16:33. doi: 10.1186/s13223-020-00430-4
- Veronez CL, Aabom A, Martin RP, et al. Genetic variation of kallikrein-kinin system and related genes in patients with hereditary angioedema. Front Med. 2019;6:28. doi: 10.3389/fmed.2019.00028
- Cugno M, Zanichelli A, Bellatorre AG, et al. Plasma biomarkers of acute attacks in patients with angioedema due to C1-inhibitor deficiency. Allergy. 2009; 64(2):254–257. doi: 10.1111/j.1398-9995.2008.01859.x
- Bova M, Suffritti C, Bafunno V, et al. Impaired control of the contact system in hereditary angioedema with normal C1-inhibitor. Allergy. 2020;75(6):1394–1403. doi: 10.1111/all.14160 EDN: HZGTHY
- Salemi M, Mandalà V, Muggeo V, et al. Growth factors and IL-17 in hereditary angioedema. Clin Exp Med. 2016;16(2):213–218. doi: 10.1007/s10238-015-0340-y EDN: OKRMRP
- Anderson J, Soteres D, Mellor J, et al. Physician- and patient-reported outcomes by hereditary angioedema type: Data from a real-world study. Allergy Asthma Proc. 2024;45(4):247–254. doi: 10.2500/aap.2024.45.240021 EDN: DGJIPK
- Maurer M, Magerl M, Betschel S, et al. The international WAO/EAACI guideline for the management of hereditary angioedema — the 2021 revision and update. Allergy. 2022;77(7):1961–1990. doi: 10.1111/all.15214 EDN: FOPZTW
- Ionis announces FDA acceptance of New Drug Application for donidalorsen for prophylactic treatment of HAE. Available from: https://ir.ionis.com/news-releases/news-release-details/ionis-announces-fda-acceptance-new-drug-application-donidalorsen
- Pharmaceutical technology. Available from: https://www.pharmaceutical-technology.com/news/fda-kalvistas-ekterly-hereditary-angioedema/
- Marceau F, Bachelard H, Charest-Morin X, et al. In vitro modeling of bradykinin-mediated angioedema states. Pharmaceuticals (Basel). 2020;13(9):201. doi: 10.3390/ph13090201 EDN: COWUSH
- Haslund D, Ryø LB, Seidelin Majidi S, et al. Dominant-negative SERPING1 variants cause intracellular retention of C1 inhibitor in hereditary angioedema. J Clin Invest. 2019;129(1):388–405. doi: 10.1172/JCI98869
- Jin G, Kawsar HI, Hirsch SA, et al. An antimicrobial peptide regulates tumor-associated macrophage trafficking via the chemokine receptor CCR2, a model for tumorigenesis. PloS One. 2010;5(6):e10993. doi: 10.1371/journal.pone.0010993 EDN: NYLEZR
- Ravi M, Paramesh V, Kaviya SR, et al. 3D cell culture systems: advantages and applications. J Cell Physiol. 2015;230(1):16–26. doi: 10.1002/jcp.24683
- Dembélé P, Garnier O, Martin DK, Vilgrain I. Microtumor spheroids provide a model for studying molecules involved in vascular organization: an illustrative study for VE-cadherin. Anticancer Res. 2022;42(10):4689–4700. doi: 10.21873/anticanres.15973 EDN: HBNEEE
- Paloschi V, Sabater-Lleal M, Middelkamp H, et al. Organ-on-a-chip technology: a novel approach to investigate cardiovascular diseases. Cardiovasc Res. 2021;117(14):2742–2754. doi: 10.1093/cvr/cvab088 EDN: HEKKCF
- Lim J, Fang HW, Bupphathong S, PC, Yeh CE, Huang W, et al. The edifice of vasculature-on-chips: a focused review on the key elements and assembly of angiogenesis models. ACS Biomater Sci Eng. 2024;10(6):3548–3567. doi: 10.1021/acsbiomaterials.3c01978 EDN: FLOGSA
- Radermacher C, Rohde A, Kucikas V, et al. Various hydrogel types as a potential in vitro angiogenesis model. Gels. 2024;10(12):820. doi: 10.3390/gels10120820 EDN: KZRAKT
- Han ED, MacFarlane RC, Mulligan AN, et al. Increased vascular permeability in C1 inhibitor-deficient mice mediated by the bradykinin type 2 receptor. J Clin Invest. 2002;109(8):1057–1063. doi: 10.1172/JCI14211
- Bupp S, Whittaker M, Lehtimaki M, et al. A novel murine in vivo model for acute hereditary angioedema attacks. Sci Rep. 2021;11(1):15924. doi: 10.1038/s41598-021-95125-0 EDN: ZYJJQX
- Qiu T, Chiuchiolo MJ, Whaley AS, et al. Gene therapy for C1 esterase inhibitor deficiency in a Murine model of hereditary angioedema. Allergy. 2019;74(6): 1081–1089. doi: 10.1111/all.13582
- Kokoye Y, Ivanov I, Cheng Q, et al. A comparison of the effects of factor XII deficiency and prekallikrein deficiency on thrombus formation. Thromb Res. 2016;140:118–124. doi: 10.1016/j.thromres.2016.02.020 EDN: WSLBIJ
Supplementary files
