Mathematical experiment in logistics research of multimodal freight transportation with time and cost indicators

Cover Page

Cite item

Full Text

Abstract

Aim: Development of a new approach to optimizing the process of cargo flows distribution at the transport loop. Construction of a mathematical model of the freight transportation process, which equally takes into account the interests of various participants in the transportation process.

Materials and Methods: A mathematical model of the freight transportation process is built, which is based on the infrastructure indicators of the considered part of the railway loop and is a multicriteria optimization problem of integer programming. The algorithm for solving the problem is common for land transport and is implemented in the environment of a computer algebra system. As a project, which is an example of the application of the developed transport and logistics method, a part of the North-Caucasian railway, adjacent to the main cargo ports of the Azov-Black Sea basin, is considered. The considered railway loop is a transit component, actively exploited for Russian exports, in particular, grain cargoes.

Results: The issues of organizing rail freight transportation in multimodal transport and technological systems are researched on the basis of egalitarian and utilitarian approaches in welfare theory. These approaches are considered in relation to the participants in the transportation process (agents) within the framework of the time and cost indicators of this process. Computational procedures for finding optimal distributions of cargo flows have been brought to concrete results.

Conclusion: A mathematical experiment used as a simulation modeling tool allows versatile and purposeful manipulation of the indicators of the transportation process and the restrictions imposed on transportation plans. The cargo flows distributions to port unloading stations obtained as a result of Pareto optimization are analyzed from the point of view of their rationality and usefulness in relation to agents.

About the authors

Viktor A. Bogachev

Rostov State Transport University

Email: bogachev-va@yandex.ru
ORCID iD: 0000-0003-1202-7318
SPIN-code: 2125-5198

candidate of Physical and Mathematical Sciences, assistant professor

Russian Federation, Rostov-on-Don

Aleksandra S. Kravets

Rostov State Transport University

Email: kravec_as@mail.ru
ORCID iD: 0000-0001-7371-7158
SPIN-code: 9591-3729

candidate of technical sciences

Russian Federation, Rostov-on-Don

Taras V. Bogachev

Rostov State University of Economics

Author for correspondence.
Email: bogachev73@yandex.ru
ORCID iD: 0000-0001-9641-0116
SPIN-code: 2262-0080

candidate of Physical and Mathematical Sciences, assistant professor

Russian Federation, Rostov-on-Don

References

  1. Aulin V, Lyashuk O, Pavlenko O, et al. Realization of the Logistic Approach in the International Cargo Delivery System. Communications - Scientific letters of the University of Zilina. 2019;21(2):3-12. doi: 10.26552/com.C.2019.2.3-12
  2. Krajcovic M, Grznar P, Fusko M, et al. Intelligent Logistics for Intelligent Production Systems. Communications - Scientific Letters of the University of Zilina. 2018;20(4):16–23. doi: 10.26552/com.C.2018.4.16-23
  3. Shramenko NY, Shramenko VO. Mathematical model of the logistics chain for the delivery of bulk cargo by rail transport. Scientific Bulletin of National Mining University. 2018;5(167):136¬–141. doi: 10.29202/nvngu/2018-5/15
  4. Prachi A, Talari G. Multi-choice stochastic transportation problem involving logistic distribution. Advances and Applications in Mathematical Sciences. 2018;18(1):45-58. Доступно по: https://www.proquest.com/docview/2195081117 Ссылка активна на: 08.03.2023.
  5. Pronello C, Camusso C and Valentina R. Last mile freight distribution and transport operators’ needs: which targets and challenges? Transportation Research Procedia. 2017;25(0):888-899. doi: 10.1016/j.trpro.2017.05.464
  6. Elbert R, Müller JP, Rentschler J. Tactical network planning and design in multimodal transportation – A systematic literature review. Research in Transportation Business & Management, 2020;35:100462. doi: 10.1016/j.rtbm.2020.100462
  7. Kopytov E, Abramov D. Multiple-criteria analysis and choice of transportation alternatives in multimodal freight transport system. Transport and Telecommunication Journal. 2012;13(2):148-158.doi: 10.2478/v10244-012-0012-x
  8. Yannis G, Kopsacheili A, Dragomanovits A, et al. State-of-the-art review on multi-criteria decision-making in the transport sector. Journal of Traffic and Transportation Engineering. 2020;7:413–431. doi: 10.1016/j.jtte.2020.05.005
  9. Kabashkin I. Heuristic Based Decision Support System for Choice of Alternative Routes in the Large-Scale Transportation Transit System on the Base of Petri Net Model. Procedia Engineering. 2016;134:359-364. doi: 10.1016/j.proeng.2016.01.020
  10. Чеченова Л.М. Обоснование решений в области цифровизации контейнерных сервисов Октябрьской железной дороги // Инновационные транспортные системы и технологии. – 2022. – Т. 8. – № 4. – С. 126–139. [Chechenova LM. Substantiation of solutions in the field of digitalization of container services of the Оktyabrskaya railway. Modern Transportation Systems and Technologies. 2022;8(4):126-139. (In Russ.). doi: 10.17816/transsyst202284126-139
  11. Yee H, Gijsbrechts J, Boute R. Synchromodal transportation planning using travel time information. Computers in Industry. 2021;125:103367. doi: 10.1016/j.compind.2020.103367.
  12. Jarašūnienė A, Batarlienė N, Vaičiūtė K. Application and Management of Information Technologies in Multimodal Transportation. Procedia Engineering. 2016;134:309-315. doi: 10.1016/j.proeng.2016.01.012
  13. Guimarães AG, Gonçalves AD. Maia Challenges and Innovation Opportunities in Load Multimodal Transport - LMT in Brazil: cluster technique application as a support tool for Decision Making. Transportation Research Procedia. 2017;25:870–887. doi: 10.1016/j.trpro.2017.05.463
  14. Koohathongsumrit N, Meethom W. An integrated approach of fuzzy risk assessment model and data envelopment analysis for route selection in multimodal transportation networks. Expert Systems with Applications. 2021;171:114342. doi: 10.1016/j.eswa.2020.114342
  15. Bogachev VA, Kravets AS, Bogachev TV. Mathematical experiment as a tool for modeling the freight transportation process. Journal of Physics: Conference series. 2021;2131(2):022094. doi: 10.1088/1742-6596/2131/2/022094

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Bogachev V.A., Kravets A.S., Bogachev T.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

link to the archive of the previous title

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).