Linear generator for power supply to on-board consumers of high-speed magnetically levitated carriages
- Authors: Nikitin V.V.1, Zhao T.1
-
Affiliations:
- Emperor Alexander I St. Petersburg State Transport University
- Issue: Vol 9, No 4 (2023)
- Pages: 59-71
- Section: Original studies
- URL: https://journal-vniispk.ru/transj/article/view/249976
- DOI: https://doi.org/10.17816/transsyst20239459-71
- ID: 249976
Cite item
Full Text
Abstract
Background: Maglev transport is a promising mode of transport that can provide passenger and freight transportation at speeds of up to 400-500 km/h, and in the longer term – up to 1000 km/h. Active research in this area is being conducted in China, Japan, and the USA. Currently, in China and Japan, speeds of 450-500 km/h have been achieved for commercial transportation, and promising programs have been adopted for the construction of high-speed maglev tracks and the creation of rolling stock. At such speeds, one of the pressing problems is the problem of contactless energy transfer for on-board consumers located on the carriage, because it is very difficult to ensure reliable contact current collection at speeds of 450-500 km/h and above.
Aim: development of the design, calculation and analysis of the characteristics of a linear generator of electrical energy for contactless power transfer to the moving crew of high-speed magnetically levitated transport.
Materials and methods: to calculate the external magnetic field of the linear generator inductor and the EMF induced in the receiving coil of the crew, methods of electromagnetic field theory and electrical circuit theory were used; calculation algorithms are implemented in the Visual Basic for Applications software environment.
Results: a design was proposed and the calculation of the external magnetic field of an inductor with transposition of conductors was performed; to increase the EMF induced in the receiving coil of the crew, it is proposed to give the receiving coil a double 8-shape; the most rational inter-circuit distance of the linear generator inductor has been established; the nature of the change in the magnetic flux penetrating the receiving coil when the vehicle moves, and the magnitude of the emf induced in the receiving coil are determined.
Conclusion: the results can be used in the development of rolling stock for promising high-speed maglev transport systems.
Full Text
##article.viewOnOriginalSite##About the authors
Victor V. Nikitin
Emperor Alexander I St. Petersburg State Transport University
Author for correspondence.
Email: pgups.emks@mail.ru
ORCID iD: 0000-0002-5699-0424
Dr. Sci (Tech.), Associate Professor, Professor of Electrical Engineering and Heat Power Engineering
Russian Federation, St.-PetersburgTianzhong Zhao
Emperor Alexander I St. Petersburg State Transport University
Email: 2115173625@qq.com
ORCID iD: 0009-0002-4028-3677
post-graduate student of Electrical Engineering and Heat Power Engineering
Russian Federation, St.-PetersburgReferences
- Магнитолевитационный транспорт: научные проблемы и технические решения / под ред. Ю.Ф. Антонова, А.А. Зайцева. – М.: ФИЗМАТЛИТ, 2015. – 612 с. [Zaitsev AA, Antonov YuF, editors. Magnitolevitacionnyj transport: nauchnye problemy i tekhnicheskie resheniya. Moscow: FIZMATLIT; 2015. 612 р. (In Russ.)]. Ссылка активна на 06.10.2023. Доступно по: http://www.search.rsl.ru
- Kluehspies J. Maglev trends in public transport: the perspectives of maglev transportation systems. Transportation Systems and Technology. 2018;4(3 suppl. 1):5-15. doi: 10.17816/transsyst201843s15-12
- Ukita K, Kashiwagi T, Sakamoto Y, Kato Y. Power Transmission Performance Verification of a Non-Contact Power Supply System for Railway Vehicles. Quarterly Reports of RTRI, 2016;57(3): 228-233. doi: 10.2219/rtriqr.57.3_228
- Yoda H, Ukita K. Wireless Power Transfer System for Railway Vehicles with Improved Power Density of Onboard Coil. Quarterly Reports of RTRI, 2023;64(1):67-72. doi: 10.2219/rtriqr.64.1_67
- Никитин В.В., Васильев В.А., Чжао Тяньчжун. Бесконтактная передача энергии на экипажи высокоскоростного магнитолевитационного транспорта // Электроника и электрооборудование транспорта. – 2022. – № 1. – С. 23–26. [Nikitin VV, Zhao Tianzhong. Wireless Power Transmission to the Carriage of High Speed Magnetolevitational Transport. Electronics and Electrical Equipment of Transport. 2022(1):23-26 (Russ., Engl.)]. Ссылка активна на 06.10.2023. Доступно по: http://www.eet-journal.ru/
- Guo L, Lu Q, Ye Y. FEM analysis of the linear generator EMF in Maglev. 2005 International Conference on Electrical Machines and Systems. 2005, Nanjing, China. Vol. 3, Pp. 2112-2115. doi: 10.1109/ICEMS.2005.202937
- Song BM, Kratz R, Gurol S. Contactless inductive power pickup system for Maglev applications. Industry Applications Conference, 2002. 37th Annual Meeting. 2002, Vol. 3. Pp. 1586-1591. doi: 10.1109/IAS.2002.1043746
- Yang Y, Dai C, Long Z. Research on Contactless Power Supply System of Medium Speed Maglev Train Based on Inductive Power Transfer 2020 Chinese Automation Congress (CAC), Shanghai, China, 2020. p. 2068-2073. doi: 10.1109/CAC51589.2020.9326922
- Ying W, Weiguo L, Hongyun H, et al. Research on Contactless Power Supply of High Speed Maglev Train Based on MCR-WPT. 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi'an, China, 2019. Pp. 2297-2302. doi: 10.1109/ICIEA.2019.8834278
- Сика З.К., Куркалов И.И., Петров Б.А. Электродинамическая левитация и линейные синхронные двигатели транспортных систем. – Рига: Зинатне, 1988. – 258 с. [Sika ZK, Kourkalov II, Petrov BA. Electrodinamicheskaya levitatsija i lineinye sinkhronnye dvigateli transportnykh system. Riga: ZINATNE; 1988. 258 p. (In Russ.)]. Доступно по: http://www.search.rsl.ru Ссылка активна на 06.10.2023.
- Ким К.К., Карпова И.М. К вопросу разработки систем подвеса на постоянных магнитах для транспортных систем // Инновационные транспортные системы и технологии. – 2022. – Т. 8. – №4. – C. 91–106. [Kim KK, Karpova IM. Оn the issue of the development of permanent magnet suspension systems for transport systems. Modern Transportation Systems and Technologies. 2022;8(4):91-106. (In Russ.)]. doi: 10.17816/transsyst20228491-106
- Wen YH, Yang X, Long ZQ. Contactless Power Supply Technology and Its Application in Rail Transport. Electric Drive for Locomotives, 2016(6):14-20. Доступно по: http://www.oriprobe.com Ссылка активна на 06.10.2023.
- Mi CC, Buja G, Choi SY, Rim CT. Modern advances in wireless power transfer systems for roadway powered electric vehicles. IEEE Transactions on Industrial Electronics. 2016: 63(10):6533-6545. doi: 10.1109/TIE.2016.2574993
- Prasad N, Jain S, Gupta S. Electrical Components of Maglev Systems: Emerging Trends. Urban Rail Transit. 2019(5):67-79. doi: 10.1007/s40864-019-0104-1
- Razek A. Review of Contactless Energy Transfer Concept Applied to Inductive Power Transfer Systems in Electric Vehicles. Appl. Sci. 2021;11(7):3221. doi: 10.3390/app11073221
- Li L., Lu Q. Investigation of Linear Generator for High Speed Maglev Train by 2D Finite Element Model. 12th International Symposium on Linear Drives for Industry Applications (LDIA); Neuchatel, Switzerland, 2019, p. 1-6, doi: 10.1109/LDIA.2019.8771004
Supplementary files
