Counting and diagnostics system for wheelsets of railway rolling stock

Cover Page

Cite item

Full Text

Abstract

Background. Upgrade of wheelsets counting and diagnostic systems at high speeds.

Aim. Improvement of precision and quality of wheelsets diagnostics.

Materials and Methods. A combination of new designs of the Shtanke magnetoinduction sensor with a microprocessor signal generation unit is proposed. The work employed mathematical modeling using Fourier series and delta-Dirac function.

Results. Software algorithms for calculating and assessing the mechanical condition of wheelsets of rolling stock at high speeds are developed.

Conclusion. A new system for counting and assessing the mechanical condition of wheelsets improves the quality of diagnostics of rolling stock at high speeds.

About the authors

Veronika V. Shtanke

Rostov State Transport University

Author for correspondence.
Email: arnold.shtanke@yandex.ru
ORCID iD: 0000-0002-7145-5999
SPIN-code: 4745-3051

Head of the Scientific and Innovation Center Transport Safety

Russian Federation, Rostov-on-Don

Vladimir A. Solomin

Rostov State Transport University

Email: ema@rgups.ru
ORCID iD: 0000-0002-0638-1436
SPIN-code: 6785-9031

Doctor of Technical Sciences, Professor

Russian Federation, Rostov-on-Don

Andrei V. Solomin

Rostov State Transport University

Email: vag@kaf.rgups.ru
ORCID iD: 0000-0002-2549-4663
SPIN-code: 7805-9636

Doctor of Technical Sciences, Professor

Russian Federation, Rostov-on-Don

References

  1. Perspectives of wheel sensors and axle counting systems. Part I. Zheleznye dorogi mira. 2012;(6):51–57. (In Russ.) Accessed: 20.01.2025. Available from: https://zdmira.com/archive/2012/06#grid-item10 EDN: OXWBPT
  2. Misharin AS. High-speed railways as the traffic arteries of a Russian giga-metropolis. Transport of the Russian Federation. 2016;2-3(63–64):7–10. (In Russ.) EDN: WDJQDL
  3. Petrov KS, Kondratenko EV, Petrov VV. Development of a system of magnetic induction sensors for diagnosing wear of the rolling stock wheelset crest. Journal of Instrument Engineering. 2022;65(8):585–596. (In Russ.) doi: 10.17586/0021-3454-2022-65-8-585-596
  4. Shapovalova YuV, Pustovoi YuE, Egizian AA, Shvalov DV. Fault modelling magneto-inductive axis counting sensors. In: Proceedings of the 2nd International Scientific-Practical Conference “Digital infocommunication technologies”, 2022 Dec 16. Rostov-on-Don. Rostov-on-Don: RSTU; 2022:279–283. (In Russ.). doi: 10.46973/978-5-907295-76-6_2022_279
  5. Solomin V, Shtanke V. Innovations in diagnostics of wheel pairs of rolling stock by track magnetic induction sensors. Railway Equipment. 2024;(1)65:32–37. (In Russ.). Accessed: 20.01.2025. Available from: https://techzd.ru/upload/iblock/979/5o516xkgnolgjzuphkqt5rwuqcg0dsj8.pdf
  6. Patent RUS №2808857/ 05.12.23. Byul. № 35. Shtanke V. Method for diagnosing the technical condition of wheel pairs and bogies of railway cars. (In Russ.) EDN: OHIURW
  7. Sergienko AB. Digital signal processing. 3rd ed. Saint Petersburg: BHV-Peterburg; 2011. (In Russ.)
  8. Bocharova AA, Zajko NJu. Mathematical foundations of signal processing. Vladivostok: DVFU; 2022. (In Russ.) Accessed: 20.01.2025. Available from: https://www.dvfu.ru/upload/medialibrary/246/dbo3o89u2c5u83hyw980qzxdwrdo97k3/Bocharova_A.A.,_Zajko_N.YU._Matematicheskie_osnovy_obrabotki_signalov.pdf?ysclid=m6ot9z42sr584452943
  9. Javorski M, Ziade T. Python. Best Practices and Tools Expert Pothon Programming. Saint Petersburg: Piter; 2024. (In Russ.) Accessed: 20.01.2025. Available from: https://library.cbr.ru/catalog/lib/books/955391/?ysclid=m6otr999ej299552641
  10. Lafore R. Object-oriented programming in C++. Saint Petersburg: Piter; 2022. (In Russ.)
  11. Frik PG. Processing and analysis of signals and images in physical experiments. Perm’: PSSRU; 2023. (In Russ.) Accessed: 20.01.2025. Available from: http://www.psu.ru/files/docs/science/books/uchebnie-posobiya/Frik-Obrabotka-i-analiz-signalov-i-izobrazhenij-v-fizicheskih-eksperimentah.pdf
  12. Sammerfild M. Programming in Pothon 3. Detailed guide. Saint Petersburg, Moscow: Simvol Pljus; 2009. (In Russ.) Available from: http://uchcom7.botik.ru/L/prog/python/python_08.pdf Accessed: 20.01.2025.
  13. Kobernichenko VG. Fundamentals of Digital Signal Processing. Ekaterinburg: UrFU, 2018. (In Russ.) Accessed: 20.01.2025. Available from: https://elar.urfu.ru/bitstream/10995/65261/1/978-5-7996-2464-4_2018.pdf?ysclid=m6ous3q1dx398458934
  14. Revinskaja OG. Fundamentals of data processing in the MatLab 2013 environment. Part 1. Tomsk: TomSU; 2015. (In Russ.) Accessed: 20.01.2025. Available from: https://vital.lib.tsu.ru/vital/access/services/Download/vtls:000521578/SOURCE1
  15. Tolmachev DE. Tarasev AA, Turygina VF. Methods of object-oriented analysis and programming in the management of economic systems. Ekaterinburg: UrFU; 2023. (In Russ.) EDN: AXITIF

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Signal of the SHMP12 sensor (wheel without flaws)

Download (362KB)
3. Fig. 2. Representation of the digital value of the Пτ signal corresponding to the 2.8 V value of the analog signal s(t) (Fig. 1)

Download (187KB)
4. Fig. 3. The standard signal received when the wheel passes over the magnetoinduction sensor, containing spurious noise (the wheel is without flaws)

Download (167KB)
5. Fig. 4. The signal during the passage of a wheel with a flaw above the magnetoinduction sensor, recorded in the laboratory

Download (239KB)

Copyright (c) 2025 Shtanke V.V., Solomin V.A., Solomin A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

link to the archive of the previous title

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).