Secondary current density of linear asynchronous motor with transverse magnetic flux based on nonuniform distribution of magnetic induction
- Authors: Solomin V.A.1, Solomin A.V.1, Trubitsina N.A.1, Zamshina L.L.1, Chekhova A.A.1
-
Affiliations:
- Rostov State Transport University
- Issue: Vol 11, No 4 (2025)
- Pages: 641-658
- Section: Original studies
- URL: https://journal-vniispk.ru/transj/article/view/364023
- DOI: https://doi.org/10.17816/transsyst694075
- ID: 364023
Cite item
Full Text
Abstract
BACKGROUND: Design and study of linear asynchronous motors for drives with linear or reciprocating movement of working parts is a pressing task.
AIM: This work aimed to study the special aspects of determining the secondary current density of a linear asynchronous motor with a transverse magnetic flux based on the transverse fringe effect.
METHODS: Mathematical modeling based on physical effects produced equations allowing to consider the nonuniform distribution of magnetic induction in the air gap when calculating the secondary current density of a linear asynchronous motor.
RESULTS: Equations to determine secondary current density in different areas of the conductive part were obtained through analysis.
CONCLUSION: The equations for calculating the secondary current density are based on both the nonuniform distribution of magnetic induction in the transverse direction and the relationships between the geometric dimensions of the linear motor.
About the authors
Vladimir A. Solomin
Rostov State Transport University
Author for correspondence.
Email: ema@rgups.ru
ORCID iD: 0000-0002-0638-1436
SPIN-code: 6785-9031
Dr. Sci. (Engineering), Professor
Russian Federation, Rostov-on-DonAndrei V. Solomin
Rostov State Transport University
Email: vag@kaf.rgups.ru
ORCID iD: 0000-0002-2549-4663
SPIN-code: 7805-9636
Dr. Sci. (Engineering), Professor
Russian Federation, Rostov-on-DonNadezhda A. Trubitsina
Rostov State Transport University
Email: ema@rgups.ru
ORCID iD: 0000-0001-6640-8306
SPIN-code: 4192-0487
Cand. Sci. (Engineering), Associate Professor
Russian Federation, Rostov-on-DonLarisa L. Zamshina
Rostov State Transport University
Email: ema@rgups.ru
ORCID iD: 0000-0001-5374-9443
SPIN-code: 8703-1347
Cand. Sci. (Engineering), Associate Professor
Russian Federation, Rostov-on-DonAnastasia A. Chekhova
Rostov State Transport University
Email: bichilovaa@mail.ru
ORCID iD: 0000-0002-3410-3687
SPIN-code: 8201-7660
Graduate
Russian Federation, Rostov-on-DonReferences
- Okhremenko NM. Osnovy teorii i proyektirovaniya lineynykh induktsionnykh nasosov dlya zhidkikh metallov. Moscow: Atomizdat; 1968. (In Russ.)
- Vol’dek AI. Induktsionnyye magnitogidrodinamicheskiye mashiny s zhidkometallicheskim rabochim telom. Leningrad: Energiya; 1970. (In Russ.)
- Sokolov MM, Sorokin LK. Elektroprivod s lineynymi asinkhronnymi dvigatelyami. Moscow: Energiya; 1974. (In Russ.)
- Izhelya GI, Rebrov SA, Shapovalenko AG. Lineynyye asinkhronnyye dvigateli. Kyiv: Tekhnika; 1975. (In Russ.)
- Svecharnik DV. Lineynyy elektroprivod. Moscow: Energiya; 1979. (In Russ.)
- Svecharnik DV. Elektricheskiye mashiny neposredstvennogo privoda. Moscow: Energoatomizdat; 1988. (In Russ.)
- Veselovskiy ON, Konyayev AYu, Sarapulov FN. Lineynyye asinkhronnyye dvigateli. Moscow: Energoatomizdat; 1991. (In Russ.)
- Volodin GI, Klimov YeA. Modelirovaniye elektromagnitnykh protsessov v lineynoy asinkhronnoy mashine s malym chislom polyusov. News of universities “Electromechanics”. 2005;1:5. (In Russ.) EDN: HSDAYR
- Sarapulov FN, Sarapulov SF, Shimchak P. Matematicheskiye modeli lineynykh induktsionnykh mashin na osnove skhem zameshcheniya. Yekaterinburg: Ural State University of Engineering and Economics; 2005. (In Russ.)
- Antonov YuF, Zaytsev AA. Magnitolevitatsionnyy transport: nauchnyye problemy i tekhnicheskiye resheniya. Moscow: FIZMATLIT; 2015. (In Russ)
- Xu W, Tang Y, Dong D, et al. Optimal reference primary flux based model predictive control of linear induction machine with MTPA and field-weakening operations for urban transit. IEEE Transactions on Industry Applications. 2022;4(58):4708–4721. doi: 10.1109/TIA.2022.3166458
- Elmorshedy MF, Xu W, Ali MM, Bukhari SA. Speed regulation of linear induction motor with finite state predictive thrust control based on sliding mode controller. In: 13th International Symposium on Linear Drives for Industry Applications (LDIA); 2021; Wuhan, China. Wuhan; 2021:1–6. doi: 10.1109/LDIA49489.2021.9505733
- Cao R, Lu M, Jiang N, Cheng M. Comparison between linear induction motor and linear flux-switching permanent-magnet motor for railway transportation. IEEE Transactions on Industrial Electronics. 2019;12(66):9394–9405. doi: 10.1109/TIE.2019.2892676
- Lv G, Zhou T, Zeng D. Influence of the ladder-slit secondary on reducing the edge effect and transverse forces in the linear induction motor. IEEE Transactions on Industrial Electronics. 2018;9(65):7516–7525. doi: 10.1109/TIE.2018.2795525
- Laithwaite ER. Linear electric machines—A personal view. Proceedings of the IEEE. 1975;2(63):250–290. doi: 10.1109/PROC.1975.9734
- Laithweite E.R. The modern linear motor. Electrical Review. 1978;2(202):250–290.
- Kalnin’ TK. Lineynyye induktsionnyye mashiny s poperechnym magnitnym potokom. Riga: Zinatne; 1965. (In Russ.)
- Popov AD, Tsvetnoy SM. Yavleniya vo vtorichnom elemente lineynogo asinkhronnogo dvigatelya s poperechnym magnitnym potokom. In: Interuniversity collection of scientific papers “Synthesis of traction electric machines and increasing their reliability in operation”. 1984:57–61.
- Popov AD. Perspektivnyye tipy transportnykh lineynykh elektricheskikh mashin. Rostov n/D: RSTU, 1985. (In Russ)
- Budig PK. Drehstromlinearmotoren. Berlin: Verlag Technik; 1978.
Supplementary files


