Broken rods in spinal deformity surgery: an analysis of clinical experience and a literature review
- Authors: Mikhaylovskiy M.V.1, Vasujra A.S.1, Lukinov V.L.2
-
Affiliations:
- Novosibirsk Research Institute for Traumatology and Orthopedics n.a. Ya.L. Tsivyan
- Institute of Computational Mathematics and Mathematical Geophysics SB RAS
- Issue: Vol 7, No 4 (2019)
- Pages: 15-26
- Section: Original Study Article
- URL: https://journal-vniispk.ru/turner/article/view/12699
- DOI: https://doi.org/10.17816/PTORS7415-26
- ID: 12699
Cite item
Abstract
Backgrоund. Rod fractures are one of the specific complications of spinal deformity surgery. The number of publications on this topic is small, and the conclusions are often contradictory.
Aim. The aim of this study is to analyze the current situation concerning the problem of fractures of the rods in spinal deformities of various etiologies in terms of frequency and risk factors for this complication.
Materials and methods. The study included 3,833 patients who underwent operations between 1996 and 2018. The inclusion criteria of being over 10 years of age with no history of spinal surgery were applied.
Results. Fractures of metal implant rods were detected in 85 patients out of a total of 3,833 (2.2%). There was a significant difference between the groups of idiopathic and congenital scoliosis patients. A rod fracture in 62 of the 85 patients was the reason for reintervention to restore integrity with a connector or a full replacement. An increase in BMI by one raised the chance of a fracture by 1.07 times (p = 0.019). Increasing the age by one year increased the possibility of a fracture by 1.03 times (p = 0.039). A statistically significant association of the ventral stage of surgical treatment (discectomy and interbody fusion with autologous bone) where no fracture was detected (p = 0.403) was revealed. Being over 15 years old a statistically significant predictor was in the group under 20 years of age (p = 0.048). For BMI, there was no statistically significant threshold for fracture probability in the group under 20 years of age. It was confirmed that a hybrid fixation system produced a significantly lower percentage of complications than a hook system.
A systematic literature review of sources on this topic included international databases (Scopus, Medline, and Google Scholar) as well as investigating the publications contained in the reference list.
Conclusions. Rod fractures during surgery for spinal deformities of various etiologies are one of the typical complications. Fracture frequency in large study groups is small. The risk of developing this complication rises with both increasing BMI and patient age, although there is no statistically significant threshold for BMI relative to the chances of fracture in the group up to 20 years of age. Modern reticular systems of attachment of the endocorrector to the vertebral structures can dramatically reduce the risk of rod fracture during the postoperative period.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Mikhail V. Mikhaylovskiy
Novosibirsk Research Institute for Traumatology and Orthopedics n.a. Ya.L. Tsivyan
Author for correspondence.
Email: MMihailovsky@niito.ru
ORCID iD: 0000-0002-4847-100X
SPIN-code: 5828-8306
Scopus Author ID: 57028305800
http://www.niito.ru/childrensteenage.php
MD, PhD, D.Sc., Professor, Chief Researcher of the Spine Surgery Department for Children and Adolescents
Russian Federation, 17, Frunze Street Novosibirsk, 630091Alexander S. Vasujra
Novosibirsk Research Institute for Traumatology and Orthopedics n.a. Ya.L. Tsivyan
Email: MMihailovsky@niito.ru
ORCID iD: 0000-0002-2473-3140
MD, PhD, Senior Researcher of the Spine Surgery Department for Children and Adolescents
Russian Federation, 17, Frunze Street Novosibirsk, 630091Vitaliy L. Lukinov
Institute of Computational Mathematics and Mathematical Geophysics SB RAS
Email: MMihailovsky@niito.ru
ORCID iD: 0000-0002-3411-508X
PhD, Senior Researcher of the Laboratory of Numerical Analysis of Stochastic Differential Equations
Russian Federation, 6, Prospect Akad. Lavrentieva, Novosibirsk, 630090References
- Ahmed SI, Bastrom TP, Yaszay B, et al. 5-Year reoperation risk and causes for revision after idiopathic scoliosis surgery. Spine (Phila Pa 1976). 2017;42(13):999-1005. https://doi.org/10.1097/BRS.0000000000001968.
- Carreon LY, Puno RM, Lenke LG, et al. Non-neurologic complications following surgery for adolescent idiopathic scoliosis. J Bone Joint Surg Am. 2007;89(11):2427-2432. https://doi.org/10.2106/JBJS.F.00995.
- Jain A, Puvanesarajah V, Menga EN, Sponseller PD. Unplanned hospital readmissions and reoperations after pediatric spinal fusion surgery. Spine (Phila Pa 1976). 2015;40(11):856-862. https://doi.org/10.1097/BRS.0000000000000857.
- Reames DL, Smith JS, Fu KM, et al. Complications in the surgical treatment of 19,360 cases of pediatric scoliosis: a review of the Scoliosis Research Society Morbidity and Mortality database. Spine (Phila Pa 1976). 2011;36(18):1484-1491. https://doi.org/10.1097/BRS.0b013e3181f3a326.
- Akazawa T, Kotani T, Sakuma T, et al. Rod fracture after long construct fusion for spinal deformity: clinical and radiographic risk factors. J Orthop Sci. 2013;18(6):926-931. https://doi.org/10.1007/s00776-013-0464-4.
- Dailey SK, Crawford AH, Asghar FS. Implant failure following posterior spinal fusion-caudal migration of a fractured rod: case report. Spine Deform. 2015;3(4):380-385. https://doi.org/10.1016/ j.jspd.2015.02.001.
- Kavadi N, Tallarico RA, Lavelle WF. Analysis of instrumentation failures after three column osteotomies of the spine. Scoliosis Spinal Disord. 2017;12:19. https://doi.org/10.1186/s13013-017-0127-x.
- Smith JS, Shaffrey CI, Ames CP, et al. Assessment of symptomatic rod fracture after posterior instrumented fusion for adult spinal deformity. Neurosurgery. 2012;71(4):862-867. https://doi.org/10.1227/NEU.0b013e3182672aab.
- Smith JS, Shaffrey E, Klineberg E, et al. Prospective multicenter assessment of risk factors for rod fracture following surgery for adult spinal deformity. J Neurosurg Spine. 2014;21(6):994-1003. https://doi.org/10.3171/2014.9.SPINE131176.
- Lertudomphonwanit T, Kelly MP, Bridwell KH, et al. Rod fracture in adult spinal deformity surgery fused to the sacrum: prevalence, risk factors, and impact on health-related quality of life in 526 patients. Spine J. 2018;18(9):1612-1624. https://doi.org/10.1016/j.spinee.2018.02.008.
- Coe JD, Arlet V, Donaldson W, et al. Complications in spinal fusion for adolescent idiopathic scoliosis in the new millennium. A report of the Scoliosis Research Society Morbidity and Mortality Committee. Spine (Phila Pa 1976). 2006;31(3):345-349. https://doi.org/10.1097/01.brs.0000197188.76369.13.
- Richards BS, Hasley BP, Casey VF. Repeat surgical interventions following “definitive” instrumentation and fusion for idiopathic scoliosis. Spine (Phila Pa 1976). 2006;31(26):3018-3026. https://doi.org/10.1097/01.brs.0000249553.22138.58.
- Weiss HR, Goodall D. Rate of complications in scoliosis surgery — a systematic review of the PubMed literature. Scoliosis. 2008;3:9. https://doi.org/10.1186/1748-7161-3-9.
- Mok JM, Cloyd JM, Bradford DS, et al. Reoperation after primary fusion for adult spinal deformity: rate, reason, and timing. Spine (Phila Pa 1976). 2009;34(8):832-839. https://doi.org/10.1097/BRS.0b013e31819f2080.
- Fu KM, Smith JS, Polly DW, et al. Morbidity and mortality associated with spinal surgery in children: a review of the Scoliosis Research Society morbidity and mortality database. J Neurosurg Pediatr. 2011;7(1):37-41. https://doi.org/10.3171/2010.10.PEDS10212.
- Ramo BA, Richards BS. Repeat surgical interventions following “definitive” instrumentation and fusion for idiopathic scoliosis: five-year update on a previously published cohort. Spine (Phila Pa 1976). 2012;37(14):1211-1217. https://doi.org/10.1097/BRS. 0b013e31824b6b05.
- De la Garza Ramos R, Goodwin CR, Purvis T, et al. Primary versus revision spinal fusion in children: an analysis of 74,525 cases from the nationwide inpatient sample. Spine (Phila Pa 1976). 2017;42(11):E660-E665. https://doi.org/10.1097/BRS.0000000000001924.
- Yang BP, Ondra SL, Chen LA, et al. Clinical and radiographic outcomes of thoracic and lumbar pedicle subtraction osteotomy for fixed sagittal imbalance. J Neurosurg Spine. 2006;5(1):9-17. https://doi.org/10.3171/spi.2006.5.1.9.
- Lykissas MG, Jain VV, Nathan ST, et al. Mid- to long-term outcomes in adolescent idiopathic scoliosis after instrumented posterior spinal fusion: a meta-analysis. Spine (Phila Pa 1976). 2013;38(2):E113-119. https://doi.org/10.1097/BRS.0b013e31827ae3d0.
- Smith JS, Klineberg E, Lafage V, et al. Prospective multicenter assessment of perioperative and minimum 2-year postoperative complication rates associated with adult spinal deformity surgery. J Neurosurg Spine. 2016;25(1):1-14. https://doi.org/10.3171/2015.11.SPINE151036.
- Wattenbarger JM, Richards BS, Herring JA. A comparison of single-rod instrumentation with double-rod instrumentation in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2000;25(13):1680-1688. https://doi.org/10.1097/00007632-200007010-00011.
- Soroceanu A, Diebo BG, Burton D, et al. Radiographical and implant-related complications in adult spinal deformity surgery: incidence, patient risk factors, and impact on health-related quality of life. Spine (Phila Pa 1976). 2015;40(18):1414-1421. https://doi.org/10.1097/BRS.0000000000001020.
- Yoshihara H. Rods in spinal surgery: a review of the literature. Spine J. 2013;13(10):1350-1358. https://doi.org/10.1016/j.spinee.2013.04.022.
- Albers HW, Hresko MT, Carlson J, Hall JE. Comparison of single- and dual-rod techniques for posterior spinal instrumentation in the treatment of adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2000;25(15):1944-1949. https://doi.org/10.1097/00007632-200008010-00013.
- Fricka KB, Mahar AT, Newton PO. Biomechanical analysis of anterior scoliosis instrumentation: differences between single and dual rod systems with and without interbody structural support. Spine (Phila Pa 1976). 2002;27(7):702-706. https://doi.org/10.1097/00007632-200204010-00006.
- Lindsey C, Deviren V, Xu Z, et al. The effects of rod contouring on spinal construct fatigue strength. Spine (Phila Pa 1976). 2006;31(15):1680-1687. https://doi.org/10.1097/01.brs.0000224177.97846.00.
- Kokabu T, Kanai S, Abe Y, et al. Identification of optimized rod shapes to guide anatomical spinal reconstruction for adolescent thoracic idiopathic scoliosis. J Orthop Res. 2018;36(12):3219-3224. https://doi.org/10.1002/jor.24118.
- Garg S, Niswander C, Pan Z, Erickson M. Cross-links do not improve clinical or radiographic outcomes of posterior spinal fusion with pedicle screws in adolescent idiopathic scoliosis: a multicenter cohort study. Spine Deform. 2015;3(4):338-344. https://doi.org/10.1016/j.jspd.2014.12.002.
- Kim YJ, Bridwell KH, Lenke LG, et al. Pseudarthrosis in long adult spinal deformity instrumentation and fusion to the sacrum: prevalence and risk factor analysis of 144 cases. Spine (Phila Pa 1976). 2006;31(20):2329-2336. https://doi.org/10.1097/01.brs.0000238968. 82799.d9.
- Dhawale AA, Shah SA, Yorgova P, et al. Effectiveness of cross-linking posterior segmental instrumentation in adolescent idiopathic scoliosis: a 2-year follow-up comparative study. Spine J. 2013;13(11):1485-1492. https://doi.org/10.1016/j.spinee.2013.05.022.
- Сotrel Y, Dubousset J. C-D instrumentation in spine surgery. Principles, technicals, mistakes and traps. Montpellier: Sauramps Medical; 1992. 159 p.
- Teles AR, Yavin D, Zafeiris CP, et al. Fractures after removal of spinal instrumentation: revisiting the stress-shielding effect of instrumentation in spine fusion. World Neurosurg. 2018;116:e1137-e1143. https://doi.org/10.1016/j.wneu.2018.05.187.
- Renshaw TS. The role of Harrington instrumentation and posterior spine fusion in the management of adolescent idiopathic scoliosis. Orthop Clin North Am. 1988;19(2):257-267.
- Hawes M. Impact of spine surgery on signs and symptoms of spinal deformity. Pediatr Rehabil. 2006;9(4):318-339. https://doi.org/10.1080/13638490500402264.
Supplementary files
