Сlinical and genetic characteristics of skeletal cyliopathies – short-rib thoracic dysplasia
- Authors: Markova T.V.1, Kenis V.M.2,3, Melchenko E.V.4, Komolkin I.A.5, Nagornova T.S.1, Osipova D.V.1, Semenova N.A.1, Petukhova M.S.1, Demina N.A.1, Zakharova E.Y.1, Dadali E.L.1, Kutsev S.I.1
-
Affiliations:
- Research Centre for Medical Genetics
- H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
- North-Western State Medical University named after Mechnikov
- H. Turner National Medical Research Centre for Children’s Orthopedics and Trauma Surgery
- Saint Petersburg State Research Institute of Phthisiopulmonology
- Issue: Vol 10, No 1 (2022)
- Pages: 43-56
- Section: Clinical studies
- URL: https://journal-vniispk.ru/turner/article/view/91116
- DOI: https://doi.org/10.17816/PTORS91116
- ID: 91116
Cite item
Abstract
BACKGROUND: Ciliopathies include the large group of hereditary diseases caused by mutations in the genes encoding primary cilia components. The largest type of skeletal ciliopathies is short-rib thoracic dysplasia.
AIM: This study describes the clinical and genetic characteristics of Russian patients with STRD with or without polydactyly caused by mutations in the genes DYNC2H1, DYNC2I2, IFT80, and IFT140.
MATERIALS AND METHODS: A comprehensive examination of 10 unrelated children aged from 9 days to 9 years, with phenotypic signs of short-rib thoracic dysplasia with or without polydactyly, was conducted. The diagnosis was confirmed using genealogical analysis, clinical examination, neurological examination, radiography, and targeted sequencing of a panel consisting of 166 genes responsible for the development of inherited skeletal pathology.
RESULTS: As a result of the molecular genetic analysis, four short-rib thoracic dysplasia genetic variants were identified. Seven patients were diagnosed with short-rib thoracic dysplasia type 3, and three unique patients were diagnosed with types 11, 2, and 9 due to mutations in the DYNC2H1 and DYNC2I2, IFT80, and IFT140 genes, respectively. From the 14 detected variants, six were identified for the first time. As in the previously described patient samples, in the analyzed sample, more than half of the cases were due to a mutation in the DYNC2H1 gene, which is responsible for the SRTD type 3. The differences in the severity of clinical manifestations and the disease course in patients with mutations in certain regions of the gene, which have a different effect on its protein product function, have been shown.
CONCLUSIONS: The results of this molecular genetic study broaden the spectrum of mutations in the DYNC2H1, DYNC212, and IFT140 genes causing short-rib thoracic dysplasia and confirm the usefulness of the whole-exome sequencing as the most informative method for identifying mutations of the genetically heterogeneous short-rib thoracic dysplasia group.
Full Text
##article.viewOnOriginalSite##About the authors
Tatiana V. Markova
Research Centre for Medical Genetics
Email: markova@med-gen.ru
ORCID iD: 0000-0002-2672-6294
SPIN-code: 4707-9184
Scopus Author ID: 57204436561
ResearcherId: AAJ-8352-2021
MD, PhD, Cand. Sci. (Med.)
Russian Federation, MoscowVladimir M. Kenis
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery;North-Western State Medical University named after Mechnikov
Email: kenis@mail.ru
ORCID iD: 0000-0002-7651-8485
SPIN-code: 5597-8832
Scopus Author ID: 36191914200
ResearcherId: K-8112-2013
http://www.rosturner.ru/kl4.htm
MD, PhD, Dr. Sci. (Med.), Professor
Russian Federation, Saint Petersburg; Saint PetersburgEvgeniy V. Melchenko
H. Turner National Medical Research Centre for Children’s Orthopedics and Trauma Surgery
Email: emelchenko@gmail.com
ORCID iD: 0000-0003-1139-5573
SPIN-code: 1552-8550
Scopus Author ID: 55022869800
MD, PhD, Cand. Sci. (Med.)
Russian Federation, Saint PetersburgIgor A. Komolkin
Saint Petersburg State Research Institute of Phthisiopulmonology
Author for correspondence.
Email: igor_komolkin@mail.ru
ORCID iD: 0000-0002-0021-9008
SPIN-code: 2024-2919
Scopus Author ID: 57194185048
MD, PhD, Dr. Sci. (Med.)
Russian Federation, Saint PetersburgTatiana S. Nagornova
Research Centre for Medical Genetics
Email: t.korotkaya90@gmail.com
ORCID iD: 0000-0003-4527-4518
SPIN-code: 6032-2080
Scopus Author ID: 57221852839
MD, laboratory geneticist
Russian Federation, MoscowDarya V. Osipova
Research Centre for Medical Genetics
Email: osipova.dasha2013@yandex.ru
ORCID iD: 0000-0002-5863-3543
Scopus Author ID: 57218497500
ResearcherId: AAD-6909-2022
MD, resident
Russian Federation, MoscowNatalia A. Semenova
Research Centre for Medical Genetics
Email: semenova@med-gen.ru
ORCID iD: 0000-0001-7041-045X
SPIN-code: 7697-7472
Scopus Author ID: 57196486863
ResearcherId: AAJ-8854-2021
MD, PhD, Cand. Sci. (Med.)
Russian Federation, MoscowMarina S. Petukhova
Research Centre for Medical Genetics
Email: petukhova@med-gen.ru
ORCID iD: 0000-0003-1286-3842
MD, geneticist
Russian Federation, MoscowNina A. Demina
Research Centre for Medical Genetics
Email: demina@med-gen.ru
ORCID iD: 0000-0003-0724-9004
MD, geneticist
Russian Federation, MoscowEkaterina Y. Zakharova
Research Centre for Medical Genetics
Email: doctor.zakharova@gmail.com
ORCID iD: 0000-0002-5020-1180
SPIN-code: 7296-6097
Scopus Author ID: 7102655877
ResearcherId: K-3413-2018
MD, PhD, Dr. Sci. (Med.), Professor
Russian Federation, MoscowElena L. Dadali
Research Centre for Medical Genetics
Email: genclinic@yandex.ru
ORCID iD: 0000-0001-5602-2805
SPIN-code: 3747-7880
Scopus Author ID: 6701733307
ResearcherId: RRR-1000-2008
MD, PhD, Dr. Sci. (Med.), Professor
Russian Federation, MoscowSergey I. Kutsev
Research Centre for Medical Genetics
Email: kutsev@mail.ru
ORCID iD: 0000-0002-3133-8018
SPIN-code: 5544-8742
Scopus Author ID: 8296960500
ResearcherId: L-3633-2018
MD, PhD, Dr. Sci. (Med.), Professor, Сorresponding Member of RAS
Russian Federation, MoscowReferences
- Oud MM, Lamers IJC, Arts HH. Ciliopathies: Genetics in pediatric medicine. J Pediatr Genet. 2017;6(1):18–29. doi: 10.1055/s-0036-1593841
- Schmidts M. Clinical genetics and pathobiology of ciliary chondrodysplasias. J Pediatr Genet. 2014;3(2):46–94. doi: 10.3233/PGE-14089
- Yuan X, Serra RA, Yang S. Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton. Ann NY Acad Sci. 2015;1335(1):78–99. doi: 10.1111/nyas.12463
- Zhang W, Paige Taylor S, Ennis HA, et al. Expanding the genetic architecture and phenotypic spectrum in the skeletal ciliopathies. Hum Mutat. 2018;39(1):152–166. doi: 10.1002/humu.23362
- Jeune M, Beraud C, Carron R. Dystrophie thoracique asphyxiante de caractère familial. Arch Fr Pediatr. 1955;12(8):886–891.
- An Online Catalog of Human Genes and Genetic Disorders [Internet]. Mendelian inheritance in man. [cited 2021 May 21]. Available from: http://ncbi.nlm.nih.gov/Omim
- Baujat G, Huber C, El Hokayem J, et al. Asphyxiating thoracic dysplasia: clinical and molecular review of 39 families. J Med Genet. 2013;50(2):91–98. doi: 10.1136/jmedgenet-2012-101282
- Handa A, Voss U, Hammarsjö A, et al. Skeletal ciliopathies: a pattern recognition approach. Jpn J Radiol. 2020;38(3):193–206. doi: 10.1007/s11604-020-00920-w
- Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–424. doi: 10.1038/gim.2015.30
- Beales PL, Bland E, Tobin JL, et al. IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat Genet. 2007;39(6):727–9. doi: 10.1038/ng2038
- Mainzer F, Saldino RM, Ozonoff MB, et al. Familial nephropathy associated with retinitis pigmentosa, cerebellar ataxia and skeletal abnormalities. Am J Med. 1970;49(4):556–562. doi: 10.1016/s0002-9343(70)80051-1
- Schmidts M, Arts HH, Bongers EMHF, et al. Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement. J Med Genet. 2013;50(5):309–323. doi: 10.1136/jmedgenet-2012-101284
- Dagoneau N, Goulet M, Genevieve D, et al. DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III. Am J Hum Genet. 2009;84(5):706–711. doi: 10.1016/j.ajhg.2009.04.016
- Čechová A, Baxová A, Zeman J, et al. Attenuated type of asphyxiating thoracic dysplasia due to mutations in DYNC2H1. Gen Prague Med Rep. 2019;120(4):124–130. doi: 10.14712/23362936.2019.17
- Merrill AE, Merriman B, Farrington-Rock C, et al. Ciliary abnormalities due to defects in the retrograde transport protein DYNC2H1 in short-rib polydactyly syndrome. Am J Hum Genet. 2009;84(4):542–549. doi: 10.1016/j.ajhg.2009.03.015
- Mei L, Huang Y, Pa Q, et al. Targeted next-generation sequencing identifies novel compound heterozygous mutations of DYNC2H1 in a fetus with short rib-polydactyly syndrome, type III. Clin Chim Acta. 2015;447:47–51. doi: 10.1016/j.cca.2015.05.005
- Maddirevula S, Alsahli S, Alhabeeb L, et al. Expanding the phenome and variome of skeletal dysplasia. Genet Med. 2018;20(12):1609–1616. doi: 10.1038/gim.2018.50
- Deden C, Neveling K, Zafeiropopoulou D, et al. Rapid whole exome sequencing in pregnancies to identify the underlying genetic cause in fetuses with congenital anomalies detected by ultrasound imaging. Prenat Diagn. 2020;40(8):972–983. doi: 10.1002/pd.5717
- Vallee RB, Höök P. Autoinhibitory and other autoregulatory elements within the dynein motor domain. J Struct Biol. 2006;156(1):175–181. doi: 10.1016/j.jsb.2006.02.012
- Schmidts М, Vodopiutz J, Christou-Savina S, et al. Mutations in the gene encoding IFT dynein complex component WDR34 cause Jeune asphyxiating thoracic dystrophy. Am J Hum Genet. 2013;93(5):932–944. doi: 10.1016/j.ajhg.2013.10.003
- Huber C, Wu S, Kim AS, et al. WDR34 mutations that cause short-rib polydactyly syndrome type III/severe asphyxiating thoracic dysplasia reveal a role for the NF-κB pathway in cilia. Am J Hum Genet. 2013;93(5):926–931. doi: 10.1016/j.ajhg.2013.10.007
- Li D, Roberts R. WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci. 2001;58(14):2085–2097. doi: 10.1007/pl00000838
- Stenson PD, Ball EV, Mort M, et al. Human gene mutation database (HGMD): 2003 update. Hum Mutat. 2003;21(6):577–581. doi: 10.1002/humu.10212
- Tüysüz B, Bariş S, Aksoy F, et al. Clinical variability of asphyxiating thoracic dystrophy (Jeune) syndrome: Evaluation and classification of 13 patients. Am J Med Genet A. 2009;149A(8):1727–1733. doi: 10.1002/ajmg.a.32962
- Beals RK, Weleber RG. Conorenal dysplasia: A syndrome of cone-shaped epiphysis, renal disease in childhood, retinitis pigmentosa and abnormality of the proximal femur. Am J Med Genet A. 2007;143A(20):2444–2447. doi: 10.1002/ajmg.a.31948
- Perrault I, Saunier S, Hanein S, et al. Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 Mutation. Am J Hum Genet. 2012;90(5):864–870. doi: 10.1016/j.ajhg.2012.03.006
- Schmidts M, Frank V, Eisenberger T, et al. Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney disease. Hum Mutat. 2013;34(5):714–724. doi: 10.1002/humu.22294
Supplementary files
