骨骼纤毛病的临床和遗传特征研究: 短肋合并胸廓发育不良
- 作者: Markova T.V.1, Kenis V.M.2,3, Melchenko E.V.4, Komolkin I.A.5, Nagornova T.S.1, Osipova D.V.1, Semenova N.A.1, Petukhova M.S.1, Demina N.A.1, Zakharova E.Y.1, Dadali E.L.1, Kutsev S.I.1
-
隶属关系:
- Research Centre for Medical Genetics
- H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
- North-Western State Medical University named after Mechnikov
- H. Turner National Medical Research Centre for Children’s Orthopedics and Trauma Surgery
- Saint Petersburg State Research Institute of Phthisiopulmonology
- 期: 卷 10, 编号 1 (2022)
- 页面: 43-56
- 栏目: Clinical studies
- URL: https://journal-vniispk.ru/turner/article/view/91116
- DOI: https://doi.org/10.17816/PTORS91116
- ID: 91116
如何引用文章
详细
论证。纤毛病是由编码初级纤毛各种成分的基因突变引起的一大类遗传疾病。最常见的一组骨骼纤毛病是胸廓发育不良伴短肋骨。
本研究的目的描述由DYNC2H1、DYNC2I2、IFT80、IFT140基因突变引起的俄罗斯胸段发育不良伴短肋骨患者的临床和遗传特征。
材料与方法。对10例无亲属关系的患儿进行综合检查,年龄9天至9岁,均有胸廓发育不良伴短肋骨表型征象,有多指或无多指。为了阐明诊断,使用了家谱分析、临床检查、神经学检查(根据标准技术进行情绪与心理领域评估)、X射线和对166个负责遗传性骨骼病理发展的基因进行定向测序。
结果。作为分子遗传分析的结果,4个基因变异胸廓发育不良与短肋骨被确定在观察的患者。由于DYNC2H1、DYNC2I2、IFT80和IFT140基因的突变,7名患者被诊断为短肋合并胸廓发育不良3型,1名患者为11型,1名患者为2型,1名患者为9型。在14个核苷酸替换中,有6个是首次检测到的。与前面描述的样本一样,在大多数被分析的患者中,该疾病是由DYNC2H1基因突变引起的,该基因突变导致短肋合并胸廓发育不良3型的发生。基因某些部分发生突变的患者,其临床表现的严重程度和疾病的病程存在差异。这些突变对其蛋白质产物的功能有不同的影响。
结论。分子遗传学研究的结果扩大了DYNC2H1、DYNC212、IFT140等基因的突变范围。这些突变是导致3、11和9型短肋胸廓发育不良的原因,并证实了在短肋胸廓发育不良的遗传异质性群体中使用外显子测序作为识别突变的主要方法。
关键词
作者简介
Tatiana V. Markova
Research Centre for Medical Genetics
Email: markova@med-gen.ru
ORCID iD: 0000-0002-2672-6294
SPIN 代码: 4707-9184
Scopus 作者 ID: 57204436561
Researcher ID: AAJ-8352-2021
MD, PhD, Cand. Sci. (Med.)
俄罗斯联邦, MoscowVladimir M. Kenis
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery;North-Western State Medical University named after Mechnikov
Email: kenis@mail.ru
ORCID iD: 0000-0002-7651-8485
SPIN 代码: 5597-8832
Scopus 作者 ID: 36191914200
Researcher ID: K-8112-2013
http://www.rosturner.ru/kl4.htm
MD, PhD, Dr. Sci. (Med.), Professor
俄罗斯联邦, Saint Petersburg; Saint PetersburgEvgeniy V. Melchenko
H. Turner National Medical Research Centre for Children’s Orthopedics and Trauma Surgery
Email: emelchenko@gmail.com
ORCID iD: 0000-0003-1139-5573
SPIN 代码: 1552-8550
Scopus 作者 ID: 55022869800
MD, PhD, Cand. Sci. (Med.)
俄罗斯联邦, Saint PetersburgIgor A. Komolkin
Saint Petersburg State Research Institute of Phthisiopulmonology
编辑信件的主要联系方式.
Email: igor_komolkin@mail.ru
ORCID iD: 0000-0002-0021-9008
SPIN 代码: 2024-2919
Scopus 作者 ID: 57194185048
MD, PhD, Dr. Sci. (Med.)
俄罗斯联邦, Saint PetersburgTatiana S. Nagornova
Research Centre for Medical Genetics
Email: t.korotkaya90@gmail.com
ORCID iD: 0000-0003-4527-4518
SPIN 代码: 6032-2080
Scopus 作者 ID: 57221852839
MD, laboratory geneticist
俄罗斯联邦, MoscowDarya V. Osipova
Research Centre for Medical Genetics
Email: osipova.dasha2013@yandex.ru
ORCID iD: 0000-0002-5863-3543
Scopus 作者 ID: 57218497500
Researcher ID: AAD-6909-2022
MD, resident
俄罗斯联邦, MoscowNatalia A. Semenova
Research Centre for Medical Genetics
Email: semenova@med-gen.ru
ORCID iD: 0000-0001-7041-045X
SPIN 代码: 7697-7472
Scopus 作者 ID: 57196486863
Researcher ID: AAJ-8854-2021
MD, PhD, Cand. Sci. (Med.)
俄罗斯联邦, MoscowMarina S. Petukhova
Research Centre for Medical Genetics
Email: petukhova@med-gen.ru
ORCID iD: 0000-0003-1286-3842
MD, geneticist
俄罗斯联邦, MoscowNina A. Demina
Research Centre for Medical Genetics
Email: demina@med-gen.ru
ORCID iD: 0000-0003-0724-9004
MD, geneticist
俄罗斯联邦, MoscowEkaterina Y. Zakharova
Research Centre for Medical Genetics
Email: doctor.zakharova@gmail.com
ORCID iD: 0000-0002-5020-1180
SPIN 代码: 7296-6097
Scopus 作者 ID: 7102655877
Researcher ID: K-3413-2018
MD, PhD, Dr. Sci. (Med.), Professor
俄罗斯联邦, MoscowElena L. Dadali
Research Centre for Medical Genetics
Email: genclinic@yandex.ru
ORCID iD: 0000-0001-5602-2805
SPIN 代码: 3747-7880
Scopus 作者 ID: 6701733307
Researcher ID: RRR-1000-2008
MD, PhD, Dr. Sci. (Med.), Professor
俄罗斯联邦, MoscowSergey I. Kutsev
Research Centre for Medical Genetics
Email: kutsev@mail.ru
ORCID iD: 0000-0002-3133-8018
SPIN 代码: 5544-8742
Scopus 作者 ID: 8296960500
Researcher ID: L-3633-2018
MD, PhD, Dr. Sci. (Med.), Professor, Сorresponding Member of RAS
俄罗斯联邦, Moscow参考
- Oud MM, Lamers IJC, Arts HH. Ciliopathies: Genetics in pediatric medicine. J Pediatr Genet. 2017;6(1):18–29. doi: 10.1055/s-0036-1593841
- Schmidts M. Clinical genetics and pathobiology of ciliary chondrodysplasias. J Pediatr Genet. 2014;3(2):46–94. doi: 10.3233/PGE-14089
- Yuan X, Serra RA, Yang S. Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton. Ann NY Acad Sci. 2015;1335(1):78–99. doi: 10.1111/nyas.12463
- Zhang W, Paige Taylor S, Ennis HA, et al. Expanding the genetic architecture and phenotypic spectrum in the skeletal ciliopathies. Hum Mutat. 2018;39(1):152–166. doi: 10.1002/humu.23362
- Jeune M, Beraud C, Carron R. Dystrophie thoracique asphyxiante de caractère familial. Arch Fr Pediatr. 1955;12(8):886–891.
- An Online Catalog of Human Genes and Genetic Disorders [Internet]. Mendelian inheritance in man. [cited 2021 May 21]. Available from: http://ncbi.nlm.nih.gov/Omim
- Baujat G, Huber C, El Hokayem J, et al. Asphyxiating thoracic dysplasia: clinical and molecular review of 39 families. J Med Genet. 2013;50(2):91–98. doi: 10.1136/jmedgenet-2012-101282
- Handa A, Voss U, Hammarsjö A, et al. Skeletal ciliopathies: a pattern recognition approach. Jpn J Radiol. 2020;38(3):193–206. doi: 10.1007/s11604-020-00920-w
- Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–424. doi: 10.1038/gim.2015.30
- Beales PL, Bland E, Tobin JL, et al. IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat Genet. 2007;39(6):727–9. doi: 10.1038/ng2038
- Mainzer F, Saldino RM, Ozonoff MB, et al. Familial nephropathy associated with retinitis pigmentosa, cerebellar ataxia and skeletal abnormalities. Am J Med. 1970;49(4):556–562. doi: 10.1016/s0002-9343(70)80051-1
- Schmidts M, Arts HH, Bongers EMHF, et al. Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement. J Med Genet. 2013;50(5):309–323. doi: 10.1136/jmedgenet-2012-101284
- Dagoneau N, Goulet M, Genevieve D, et al. DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III. Am J Hum Genet. 2009;84(5):706–711. doi: 10.1016/j.ajhg.2009.04.016
- Čechová A, Baxová A, Zeman J, et al. Attenuated type of asphyxiating thoracic dysplasia due to mutations in DYNC2H1. Gen Prague Med Rep. 2019;120(4):124–130. doi: 10.14712/23362936.2019.17
- Merrill AE, Merriman B, Farrington-Rock C, et al. Ciliary abnormalities due to defects in the retrograde transport protein DYNC2H1 in short-rib polydactyly syndrome. Am J Hum Genet. 2009;84(4):542–549. doi: 10.1016/j.ajhg.2009.03.015
- Mei L, Huang Y, Pa Q, et al. Targeted next-generation sequencing identifies novel compound heterozygous mutations of DYNC2H1 in a fetus with short rib-polydactyly syndrome, type III. Clin Chim Acta. 2015;447:47–51. doi: 10.1016/j.cca.2015.05.005
- Maddirevula S, Alsahli S, Alhabeeb L, et al. Expanding the phenome and variome of skeletal dysplasia. Genet Med. 2018;20(12):1609–1616. doi: 10.1038/gim.2018.50
- Deden C, Neveling K, Zafeiropopoulou D, et al. Rapid whole exome sequencing in pregnancies to identify the underlying genetic cause in fetuses with congenital anomalies detected by ultrasound imaging. Prenat Diagn. 2020;40(8):972–983. doi: 10.1002/pd.5717
- Vallee RB, Höök P. Autoinhibitory and other autoregulatory elements within the dynein motor domain. J Struct Biol. 2006;156(1):175–181. doi: 10.1016/j.jsb.2006.02.012
- Schmidts М, Vodopiutz J, Christou-Savina S, et al. Mutations in the gene encoding IFT dynein complex component WDR34 cause Jeune asphyxiating thoracic dystrophy. Am J Hum Genet. 2013;93(5):932–944. doi: 10.1016/j.ajhg.2013.10.003
- Huber C, Wu S, Kim AS, et al. WDR34 mutations that cause short-rib polydactyly syndrome type III/severe asphyxiating thoracic dysplasia reveal a role for the NF-κB pathway in cilia. Am J Hum Genet. 2013;93(5):926–931. doi: 10.1016/j.ajhg.2013.10.007
- Li D, Roberts R. WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci. 2001;58(14):2085–2097. doi: 10.1007/pl00000838
- Stenson PD, Ball EV, Mort M, et al. Human gene mutation database (HGMD): 2003 update. Hum Mutat. 2003;21(6):577–581. doi: 10.1002/humu.10212
- Tüysüz B, Bariş S, Aksoy F, et al. Clinical variability of asphyxiating thoracic dystrophy (Jeune) syndrome: Evaluation and classification of 13 patients. Am J Med Genet A. 2009;149A(8):1727–1733. doi: 10.1002/ajmg.a.32962
- Beals RK, Weleber RG. Conorenal dysplasia: A syndrome of cone-shaped epiphysis, renal disease in childhood, retinitis pigmentosa and abnormality of the proximal femur. Am J Med Genet A. 2007;143A(20):2444–2447. doi: 10.1002/ajmg.a.31948
- Perrault I, Saunier S, Hanein S, et al. Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 Mutation. Am J Hum Genet. 2012;90(5):864–870. doi: 10.1016/j.ajhg.2012.03.006
- Schmidts M, Frank V, Eisenberger T, et al. Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney disease. Hum Mutat. 2013;34(5):714–724. doi: 10.1002/humu.22294
