Experimental evaluation of the efficiency of chitosan matrixes under conditions of modeling of bone defect in vivo (preliminary message)

Cover Page

Cite item

Abstract

Background. Despite the wide range of studies, the development of osteoplastic material, which has not only osteoconductive but also osteoinductive properties, remains an extremely topical issue in modern medical materials science. This work is devoted to experimental evaluation of the effectiveness of synthetic osteoplastic composite material based on chitosan and hydroxyapatite.

Aim. This study aimed to determine the effects of spongy implants based on chitosan and its composite with hydroxyapatite nanoparticles in an amount of 50 wt. % on early osteogenesis in the area of the through defect of the ileum.

Materials and methods. The studied materials were sponge implants based on chitosan and its composite with hydroxyapatite nanoparticles in an amount of 50 wt. %. Comparison groups include those without implant placement and those with replacement with commercial Reprobone osteoplastic material. Materials were implanted into the zone of the through defect of the ileum of rabbits for a period of 28 days.

Results. A high rate of resorption of materials based on chitosan in bone tissue and active growth of reticulofibrotic bone tissue along the edges of the defect was established, and the formation of cartilaginous islands and bone marrow was recorded in the group of chitosan implants with hydroxyapatite. The aseptic effect was observed with the use of implants made of chitosan and hydroxyapatite.

Conclusions. The data obtained allow us to argue about the osteoconductivity of the studied materials and the prospects for further development in this direction.

About the authors

Sergey V. Vissarionov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
Scopus Author ID: 6504128319

MD, PhD, D.Sc., Professor, Corresponding Member of RAS, Deputy Director for Research and Academic Affairs, Head of the Department of Spinal Pathology and Neurosurgery

Russian Federation, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603

Marat S. Asadulaev

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Author for correspondence.
Email: marat.asadulaev@yandex.ru
ORCID iD: 0000-0002-1768-2402
SPIN-code: 3336-8996
Scopus Author ID: 57191618743

MD, clinical resident, laboratory assistant in the Laboratory of Experimental Surgery

Russian Federation, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603

Anton S. Shabunin

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery; Peter the Great Saint Petersburg Polytechnic University

Email: anton-shab@yandex.ru
ORCID iD: 0000-0002-8883-0580
SPIN-code: 1260-5644
Scopus Author ID: 57191623923

laboratory assistant in the Laboratory of Experimental Surgery; PhD student

Russian Federation, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603; 29, Polytechnitcheskaya street, St.-Petersburg, 195251

Vladimir E. Yudin

Peter the Great Saint Petersburg Polytechnic University

Email: yudin@hq.macro.ru
ORCID iD: 0000-0002-5517-4767
SPIN-code: 4996-7540
Scopus Author ID: 7103377720

Dr. Phys.-Math. Sci., Professor, Director of Laboratory of Polymeric Materials for Tissue Engeneering and Transplantology

Russian Federation, 29, Polytechnitcheskaya street, St.-Petersburg, 195251

Moisei B. Paneiakh

Saint Petersburg State Pediatric Medical University

Email: moisey031190@gmail.com
ORCID iD: 0000-0002-2527-9058

assistant of the Department of Pathological Anatomy with a course of forensic medicine

Russian Federation, 2, Litovskay street, Saint-Peterburg, 194100

Pavel V. Popryadukhin

Peter the Great Saint Petersburg Polytechnic University

Email: pavelpnru@gmail.com
ORCID iD: 0000-0001-5478-5630
Scopus Author ID: 39161683200

PhD, Senior Researcher of Laboratory of Polymeric Materials for Tissue Engeneering and Transplantology

Russian Federation, 29, Polytechnitcheskaya street, St.-Petersburg, 195251

Yury A. Novosad

Peter the Great Saint Petersburg Polytechnic University

Email: yurynovosad@gmail.com
ORCID iD: 0000-0002-6150-374X

student

Russian Federation, 29, Polytechnitcheskaya street, St.-Petersburg, 195251

Vasili A. Gordienko

Saint Petersburg State Pediatric Medical University

Email: chet1337@gmail.com
ORCID iD: 0000-0003-0590-2137

Research Assistant of the Laboratory of Experimental Surgery

Russian Federation, 2, Litovskay street, Saint-Peterburg, 194100

Aleksandr G. Aganesov

Russian Scientific Center of Surgery named after academician B.V. Petrovsky

Email: chet1337@gmail.com
ORCID iD: 0000-0001-8823-5004

MD, PhD, D.Sc., Professor, Head of the Department of spine surgery

Russian Federation, 2, Abrikosovsky pereulok, Moscow, 119991

References

  1. Анастасиева Е.А., Садовой М.А., Воропаева А.А., Кирилова И.А. Использование ауто- и аллотрансплантатов для замещения костных дефектов при резекциях опухолей костей // Травматология и ортопедия России. – 2017. – Т. 23. – № 3. – С. 148–155. [Anastasieva EA, Sadovoy MA, Voropaeva AA, Kirilova IA. Reconstruction of bone defects after tumor resection by autoand allografts (review of literature). Travmatologiia i ortopediia Rossii. 2017;(23):148-155. (In Russ.)]
  2. Котельников Г.П., Колсанов А.В., Щербовских А.Е. Реконструкция посттравматических и постоперационных дефектов нижней челюсти // Хирургия. Журнал им. Н.И. Пирогова. – 2017. – № 7. – С. 69–72. [Kotel’nikov GP, Kolsanov AV, Shcherbovskikh AE. Reconstruction of posttraumatic and postoperative defects of lower jaw. Khirurgiia (Mosk). 2017;(7):69-72. (In Russ.)]. https://doi.org/10.17116/hirurgia2017769-72.
  3. Garcia-Gareta E, Coathup MJ, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone. 2015;81:112-121. https://doi.org/10.1016/j.bone.2015.07.007.
  4. Гайворонский И.В., Губочкин Н.Г., Микитюк С.И., и др. Анатомические обоснования формирования костных трансплантатов на мышечно-сосудистой ножке в нижней трети предплечья и возможностей их перемещения // Вестник Российской военно-медицинской академии. – 2016. – Т. 3. – № 55. – С. 129–134. [Gayvoronskiy IV, Gubochkin NG, Mikityuk SI. Anatomic substantiation of formation of bone grafts on muscle-pedicle in lower third of the forearm and the possibility of their transplantation. Vestnik Rossiiskoi voenno-meditsinskoi akademii. 2016;3(55):129-134. (In Russ.)]
  5. Предеин Ю.А., Рерих В.В. Костные и клеточные имплантаты для замещения дефектов кости // Современные проблемы науки и образования. – 2016. – № 6. – С. 132–146. [Predein YA, Rerikh VV. Bone and cellular implants for replacement bone defects. Sovremennye problemy nauki i obrazovaniya. 2016;(6):132-146. (In Russ.)]
  6. Лекишвили М.В., Склянчук Е.Д., Акатов В.С., и др. Костнопластические остеоиндуктивные материалы в травматологии и ортопедии // Гений ортопедии. – 2015. – № 4. – С. 61–67. [Lekishvili MV, Sklyanchuk ED, Akatov VS, et al. Osteoplastic osteoinductive materials in traumatology and orthopaedics. Genij ortopedii. 2015;(4):61-67. (In Russ.)]
  7. Хватов В.Б., Свищев А.В., Ваза А.Ю., и др. Способ изготовления лиофилизированного аллотрансплантата кости // Трансплантология. – 2016. – № 1. – С. 13–18. [Khvatov VB, Svishchev AV, Vaza AY. Sposob Method of manufacturing a lyophilized allograft bone. Transplantologiia. 2016;(1):13-18. (In Russ.)]
  8. Кирилова И.А., Подорожная В.Т., Шаркеев Ю.П., и др. Свойства деминерализованного костного матрикса для биоинженерии тканей // Комплексные проблемы сердечно-сосудистых заболеваний. – 2017. – Т. 6. – № 3. – С. 25–36. [Kirilova IA, Podorozhnaya VT, Sharkeev YP, et al. Properties of the demineralized bone matrix for bioenginery of tissue. Copmplex issues of cardiovascular diseases. 2017;6(3):25-36. (In Russ.)]
  9. Кирилова И.А., Садовой М.А., Подорожная В.Т. Сравнительная характеристика материалов для костной пластики: состав и свойства // Хирургия позвоночника. – 2012. – № 3. – С. 72–83. [Kirilova IA, Sadovoy MA, Podorozhnaya VT. Comparative characteristics of materials for bone grafting: composition and properties. Spine surgery. 2012;(3):72-83. (In Russ.)]
  10. Кирилова И.А. Деминерализованный костный трансплантат как стимулятор остеогенеза: современные концепции // Хирургия позвоночника. – 2004. – № 3 – С. 105–110. [Kirilova IA. Demineralized bone graft as an osteogenesis stimulator: current literature review. Spine surgery. 2004;(3):105-110. (In Russ.)]
  11. Roseti L, Parisi V, Petretta M, et al. Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C Mater Biol Appl. 2017;78:1246-1262. https://doi.org/10.1016/j.msec.2017.05.017.
  12. Deepthi S, Venkatesan J, Kim SK, et al. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Int J Biol Macromol. 2016;93(Pt B):1338-1353. https://doi.org/10.1016/ j.ijbiomac.2016.03.041.
  13. Balagangadharan K, Dhivya S, Selvamurugan N. Chitosan based nanofibers in bone tissue engineering. Int J Biol Macromol. 2017;104(Pt B):1372-1382. https://doi.org/10.1016/j.ijbiomac.2016.12.046.
  14. Logith Kumar R, Keshav Narayan A, Dhivya S, et al. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr Polym. 2016;151:172-188. https://doi.org/10.1016/j.carbpol.2016.05.049.
  15. Dobrovolskaya IP, Yudin VE, Popryadukhin PV, et al. In vivo studies of chitosan fiber resorption. J Appl Cosmetol. 2015;33:81-87.
  16. Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31(7):603-632. https://doi.org/10.1016/j.progpolymsci.2006.06.001.
  17. Sharma C, Dinda AK, Potdar PD, et al. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2016;64:416-427. https://doi.org/10.1016/ j.msec.2016.03.060.
  18. Zhang J, Liu G, Wu Q, et al. Novel mesoporous hydroxyapatite/chitosan composite for bone repair. J Bionic Eng. 2012;9(2):243-251. https://doi.org/10.1016/s1672-6529(11)60117-0.
  19. Danoux CB, Barbieri D, Yuan H, et al. In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration. Biomatter. 2014;4:e27664. https://doi.org/10.4161/biom.27664.
  20. Cox SC, Thornby JA, Gibbons GJ, et al. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2015;47:237-247. https://doi.org/10.1016/j.msec.2014.11.024.
  21. Dutta SR, Passi D, Singh P, Bhuibhar A. Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review. Ir J Med Sci. 2015;184(1):101-106. https://doi.org/10.1007/s11845-014-1199-8.
  22. Ratnayake JTB, Mucalo M, Dias GJ. Substituted hydroxyapatites for bone regeneration: A review of current trends. J Biomed Mater Res B Appl Biomater. 2017;105(5):1285-1299. https://doi.org/10.1002/jbm.b.33651.
  23. Oliveira HL, Da Rosa WLO, Cuevas-Suárez CE, et al. Histological evaluation of bone repair with hydroxyapatite: a systematic review. Calcif Tissue Int. 2017;101(4):341-354. https://doi.org/10.1007/s00223-017-0294-z.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The appearance of the zone of the simulated defect: a - zone of the defect before implantation of the investigated materials; b - defect zone with implanted spongy materials based on chitosan

Download (229KB)
3. Fig. 2. Control group: necrotic detritus with dense neutrophilic leukocyte infiltration and adjacent bone beams and periosteum. Hematoxylin and eosin stain, magnification × 40

Download (161KB)
4. Fig. 3. Positive control group: spongy structure of Reprobone, filling the area of the bone defect. In the cells of a foreign body - a pronounced infiltration of neutrophilic leukocytes. Hematoxylin and eosin stain, magnification × 40

Download (247KB)
5. Fig. 4. Group with chitosan: proliferation along the edges of the defect of reticulofibrotic bone tissue. Hematoxylin and eosin stain, magnification × 40

Download (206KB)
6. Fig. 5. A group with a chitosan prosthesis with hydroxyapatite: cartilaginous islets among the coarse fiber tissue in the area of the bone defect. Hematoxylin and eosin stain, magnification × 40

Download (181KB)

Copyright (c) 2020 Vissarionov S.V., Asadulaev M.S., Shabunin A.S., Yudin V.E., Paneiakh M.B., Popryadukhin P.V., Novosad Y.A., Gordienko V.A., Aganesov A.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».