壳聚糖基质在体内骨缺损建模条件下的有效性实验评价 (初步报告)
- 作者: Vissarionov S.V.1, Asadulaev M.S.1, Shabunin A.S.1,2, Yudin V.E.2, Paneiakh M.B.3, Popryadukhin P.V.2, Novosad Y.A.2, Gordienko V.A.3, Aganesov A.G.4
-
隶属关系:
- H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
- Peter the Great Saint Petersburg Polytechnic University
- Saint Petersburg State Pediatric Medical University
- Russian Scientific Center of Surgery named after academician B.V. Petrovsky
- 期: 卷 8, 编号 1 (2020)
- 页面: 53-62
- 栏目: Experimental and theoretical research
- URL: https://journal-vniispk.ru/turner/article/view/16480
- DOI: https://doi.org/10.17816/PTORS16480
- ID: 16480
如何引用文章
详细
论证:尽管骨塑材料的研究范围很广,但它不仅具有骨的传导性,而且还具有骨的诱导性,这是现代医学材料科学中一个非常热门的课题。本文对壳聚糖-羟基磷灰石复合骨塑材料的有效性进行了实验评价。
目的是研究壳聚糖基海绵植入物及其与羟基磷灰石纳米颗粒的复合材料(重量为50%)对经髂骨缺损区早期成骨的影响。
材料与方法。在主要组中,以壳聚糖及其复合羟基磷灰石纳米颗粒为基质的海绵植入物的用重
量为50%。在对照组中,种植体被使用,替换用商业Reprobone骨塑材料。材料于第28天植入兔穿透缺陷损区。
结果。壳聚糖材料在骨组织中的高吸收率和沿缺损边缘的网状纤维组织的活性增殖被证实。羟基磷灰石壳聚糖植入组软骨和骨痂形成明显。壳聚糖和羟基磷灰石植入物具有无菌作用。
结论。所获得的数据表明了所研究材料的骨传导性以及在这方面进一步发展的前景。
作者简介
Sergey Vissarionov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
Scopus 作者 ID: 6504128319
MD, PhD, D.Sc., Professor, Corresponding Member of RAS, Deputy Director for Research and Academic Affairs, Head of the Department of Spinal Pathology and Neurosurgery
俄罗斯联邦, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603Marat Asadulaev
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
编辑信件的主要联系方式.
Email: marat.asadulaev@yandex.ru
ORCID iD: 0000-0002-1768-2402
SPIN 代码: 3336-8996
Scopus 作者 ID: 57191618743
MD, clinical resident, laboratory assistant in the Laboratory of Experimental Surgery
俄罗斯联邦, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603Anton Shabunin
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery; Peter the Great Saint Petersburg Polytechnic University
Email: anton-shab@yandex.ru
ORCID iD: 0000-0002-8883-0580
SPIN 代码: 1260-5644
Scopus 作者 ID: 57191623923
laboratory assistant in the Laboratory of Experimental Surgery; PhD student
俄罗斯联邦, 64, Parkovaya str., Saint-Petersburg, Pushkin, 196603; 29, Polytechnitcheskaya street, St.-Petersburg, 195251Vladimir Yudin
Peter the Great Saint Petersburg Polytechnic University
Email: yudin@hq.macro.ru
ORCID iD: 0000-0002-5517-4767
SPIN 代码: 4996-7540
Scopus 作者 ID: 7103377720
Dr. Phys.-Math. Sci., Professor, Director of Laboratory of Polymeric Materials for Tissue Engeneering and Transplantology
俄罗斯联邦, 29, Polytechnitcheskaya street, St.-Petersburg, 195251Moisei Paneiakh
Saint Petersburg State Pediatric Medical University
Email: moisey031190@gmail.com
ORCID iD: 0000-0002-2527-9058
assistant of the Department of Pathological Anatomy with a course of forensic medicine
俄罗斯联邦, 2, Litovskay street, Saint-Peterburg, 194100Pavel Popryadukhin
Peter the Great Saint Petersburg Polytechnic University
Email: pavelpnru@gmail.com
ORCID iD: 0000-0001-5478-5630
Scopus 作者 ID: 39161683200
PhD, Senior Researcher of Laboratory of Polymeric Materials for Tissue Engeneering and Transplantology
俄罗斯联邦, 29, Polytechnitcheskaya street, St.-Petersburg, 195251Yury Novosad
Peter the Great Saint Petersburg Polytechnic University
Email: yurynovosad@gmail.com
ORCID iD: 0000-0002-6150-374X
student
俄罗斯联邦, 29, Polytechnitcheskaya street, St.-Petersburg, 195251Vasili Gordienko
Saint Petersburg State Pediatric Medical University
Email: chet1337@gmail.com
ORCID iD: 0000-0003-0590-2137
Research Assistant of the Laboratory of Experimental Surgery
俄罗斯联邦, 2, Litovskay street, Saint-Peterburg, 194100Aleksandr Aganesov
Russian Scientific Center of Surgery named after academician B.V. Petrovsky
Email: chet1337@gmail.com
ORCID iD: 0000-0001-8823-5004
MD, PhD, D.Sc., Professor, Head of the Department of spine surgery
俄罗斯联邦, 2, Abrikosovsky pereulok, Moscow, 119991参考
- Анастасиева Е.А., Садовой М.А., Воропаева А.А., Кирилова И.А. Использование ауто- и аллотрансплантатов для замещения костных дефектов при резекциях опухолей костей // Травматология и ортопедия России. – 2017. – Т. 23. – № 3. – С. 148–155. [Anastasieva EA, Sadovoy MA, Voropaeva AA, Kirilova IA. Reconstruction of bone defects after tumor resection by autoand allografts (review of literature). Travmatologiia i ortopediia Rossii. 2017;(23):148-155. (In Russ.)]
- Котельников Г.П., Колсанов А.В., Щербовских А.Е. Реконструкция посттравматических и постоперационных дефектов нижней челюсти // Хирургия. Журнал им. Н.И. Пирогова. – 2017. – № 7. – С. 69–72. [Kotel’nikov GP, Kolsanov AV, Shcherbovskikh AE. Reconstruction of posttraumatic and postoperative defects of lower jaw. Khirurgiia (Mosk). 2017;(7):69-72. (In Russ.)]. https://doi.org/10.17116/hirurgia2017769-72.
- Garcia-Gareta E, Coathup MJ, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone. 2015;81:112-121. https://doi.org/10.1016/j.bone.2015.07.007.
- Гайворонский И.В., Губочкин Н.Г., Микитюк С.И., и др. Анатомические обоснования формирования костных трансплантатов на мышечно-сосудистой ножке в нижней трети предплечья и возможностей их перемещения // Вестник Российской военно-медицинской академии. – 2016. – Т. 3. – № 55. – С. 129–134. [Gayvoronskiy IV, Gubochkin NG, Mikityuk SI. Anatomic substantiation of formation of bone grafts on muscle-pedicle in lower third of the forearm and the possibility of their transplantation. Vestnik Rossiiskoi voenno-meditsinskoi akademii. 2016;3(55):129-134. (In Russ.)]
- Предеин Ю.А., Рерих В.В. Костные и клеточные имплантаты для замещения дефектов кости // Современные проблемы науки и образования. – 2016. – № 6. – С. 132–146. [Predein YA, Rerikh VV. Bone and cellular implants for replacement bone defects. Sovremennye problemy nauki i obrazovaniya. 2016;(6):132-146. (In Russ.)]
- Лекишвили М.В., Склянчук Е.Д., Акатов В.С., и др. Костнопластические остеоиндуктивные материалы в травматологии и ортопедии // Гений ортопедии. – 2015. – № 4. – С. 61–67. [Lekishvili MV, Sklyanchuk ED, Akatov VS, et al. Osteoplastic osteoinductive materials in traumatology and orthopaedics. Genij ortopedii. 2015;(4):61-67. (In Russ.)]
- Хватов В.Б., Свищев А.В., Ваза А.Ю., и др. Способ изготовления лиофилизированного аллотрансплантата кости // Трансплантология. – 2016. – № 1. – С. 13–18. [Khvatov VB, Svishchev AV, Vaza AY. Sposob Method of manufacturing a lyophilized allograft bone. Transplantologiia. 2016;(1):13-18. (In Russ.)]
- Кирилова И.А., Подорожная В.Т., Шаркеев Ю.П., и др. Свойства деминерализованного костного матрикса для биоинженерии тканей // Комплексные проблемы сердечно-сосудистых заболеваний. – 2017. – Т. 6. – № 3. – С. 25–36. [Kirilova IA, Podorozhnaya VT, Sharkeev YP, et al. Properties of the demineralized bone matrix for bioenginery of tissue. Copmplex issues of cardiovascular diseases. 2017;6(3):25-36. (In Russ.)]
- Кирилова И.А., Садовой М.А., Подорожная В.Т. Сравнительная характеристика материалов для костной пластики: состав и свойства // Хирургия позвоночника. – 2012. – № 3. – С. 72–83. [Kirilova IA, Sadovoy MA, Podorozhnaya VT. Comparative characteristics of materials for bone grafting: composition and properties. Spine surgery. 2012;(3):72-83. (In Russ.)]
- Кирилова И.А. Деминерализованный костный трансплантат как стимулятор остеогенеза: современные концепции // Хирургия позвоночника. – 2004. – № 3 – С. 105–110. [Kirilova IA. Demineralized bone graft as an osteogenesis stimulator: current literature review. Spine surgery. 2004;(3):105-110. (In Russ.)]
- Roseti L, Parisi V, Petretta M, et al. Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C Mater Biol Appl. 2017;78:1246-1262. https://doi.org/10.1016/j.msec.2017.05.017.
- Deepthi S, Venkatesan J, Kim SK, et al. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Int J Biol Macromol. 2016;93(Pt B):1338-1353. https://doi.org/10.1016/ j.ijbiomac.2016.03.041.
- Balagangadharan K, Dhivya S, Selvamurugan N. Chitosan based nanofibers in bone tissue engineering. Int J Biol Macromol. 2017;104(Pt B):1372-1382. https://doi.org/10.1016/j.ijbiomac.2016.12.046.
- Logith Kumar R, Keshav Narayan A, Dhivya S, et al. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr Polym. 2016;151:172-188. https://doi.org/10.1016/j.carbpol.2016.05.049.
- Dobrovolskaya IP, Yudin VE, Popryadukhin PV, et al. In vivo studies of chitosan fiber resorption. J Appl Cosmetol. 2015;33:81-87.
- Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31(7):603-632. https://doi.org/10.1016/j.progpolymsci.2006.06.001.
- Sharma C, Dinda AK, Potdar PD, et al. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2016;64:416-427. https://doi.org/10.1016/ j.msec.2016.03.060.
- Zhang J, Liu G, Wu Q, et al. Novel mesoporous hydroxyapatite/chitosan composite for bone repair. J Bionic Eng. 2012;9(2):243-251. https://doi.org/10.1016/s1672-6529(11)60117-0.
- Danoux CB, Barbieri D, Yuan H, et al. In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration. Biomatter. 2014;4:e27664. https://doi.org/10.4161/biom.27664.
- Cox SC, Thornby JA, Gibbons GJ, et al. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2015;47:237-247. https://doi.org/10.1016/j.msec.2014.11.024.
- Dutta SR, Passi D, Singh P, Bhuibhar A. Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review. Ir J Med Sci. 2015;184(1):101-106. https://doi.org/10.1007/s11845-014-1199-8.
- Ratnayake JTB, Mucalo M, Dias GJ. Substituted hydroxyapatites for bone regeneration: A review of current trends. J Biomed Mater Res B Appl Biomater. 2017;105(5):1285-1299. https://doi.org/10.1002/jbm.b.33651.
- Oliveira HL, Da Rosa WLO, Cuevas-Suárez CE, et al. Histological evaluation of bone repair with hydroxyapatite: a systematic review. Calcif Tissue Int. 2017;101(4):341-354. https://doi.org/10.1007/s00223-017-0294-z.
补充文件
