PIEZO2基因及其在远端关节畸形发病中的作用(文献综述)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

论证。PIEZO1和PIEZO2是机械敏感性离子通道蛋白,在人类中由同名基因编码。PIEZO蛋白通过转导将机械信号转化为细胞的生化反应。最近的大量证据强调了这一离子通道蛋白家族在调节生理过程中的重要性,但许多机制仍然未知。目前的研究已经证明,PIEZO2基因突变会导致各种形式的远端关节畸形。

本研究旨在分析是分析有关PIEZO2基因及其在远端关节病发展中的作用的信息的出版物。

材料与方法。文章介绍了在开放科学文献数据库PubMed、Cochrane Library和eLibrary中进行文献检索的结果。我们选取了1969年至2022年期间的40篇国内外出版物。

结果。文章显示了PIEZO2基因突变与远端型关节畸形发病的关系。PIEZO2基因的蛋白质缺陷突变导致远端关节发育不良,并伴有本体感觉和触觉受损(常染色体隐性遗传类型)。人类PIEZO2基因的功能增强突变导致了导致3型和5型远端关节病(常染色体显性遗传型)的发生。

结论。远端型关节发育不全的罕见性和临床诊断的复杂性决定了需要通过分子遗传学研究来验证疾病并选择最佳治疗策略。本文将对各科医生有所帮助。

作者简介

Varvara V. Chernyavskaya-Haukka

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: haukka90@mail.ru
ORCID iD: 0000-0002-6349-0559

MD, resident

俄罗斯联邦, Saint Petersburg

Olga E. Agranovich

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

编辑信件的主要联系方式.
Email: olga_agranovich@yahoo.com
ORCID iD: 0000-0002-6655-4108
SPIN 代码: 4393-3694
Scopus 作者 ID: 56913386600
Researcher ID: B-3334-2019
http://www.rosturner.ru/kl10.htm

MD, PhD, Dr. Sci. (Med.)

俄罗斯联邦, Saint Petersburg

参考

  1. Szczot M, Nickolls AR, Lam RM, et al. The form and function of PIEZO2. Annu Rev Biochem. 2021;90:507–534. doi: 10.1146/annurev-biochem-081720-023244
  2. Assaraf E, Blecher R, Heinemann-Yerushalmi L, et al. PIEZO2 expressed in proprioceptive neurons is essential for skeletal integrity. Nat Commun. 2020;11(1). doi: 10.1038/s41467-020-16971-6
  3. Coste B, Mathur J, Schmidt M, et al. PIEZO1 and PIEZO2 are essential components of distinct mechanically activated cation channels. Science. 2010;330(6000):55–60. doi: 10.1126/science.1193270
  4. Coste B, Xiao B, Santos JS, et al. PIEZO proteins are pore-forming subunits of mechanically activated channels. Nature. 2012;483(7388):176–181. doi: 10.1038/nature10812
  5. Bamshad M, van Heest AE, Pleasure D. Arthrogryposis: a review and update. J Bone Joint Surg Am. 2009;91(Suppl 4):40–46. doi: 10.2106/JBJS.I.00281
  6. Gordon H, Davies D, Berman M. Camptodactyly, cleft palate, and club foot. A syndrome showing the autosomal-dominant pattern of inheritance. J Med Genet. 1969;6(3):266–274. doi: 10.1136/jmg.6.3.266
  7. Say B, Barber DH, Thompson RC, et al. The Gordon syndrome. J Med Genet. 1980;17(5). doi: 10.1136/jmg.17.5.405
  8. Hall JG, Reed SD, Greene G. The distal arthrogryposes: delineation of new entities – review and nosologic discussion. Am J Med Genet. 1982;11(2):185–239. doi: 10.1002/ajmg.1320110208
  9. Ioan DM, Belengeanu V, Maximilian C, et al. Distal arthrogryposis with autosomal dominant inheritance and reduced penetrance in females: the Gordon syndrome. Clin Genet. 1993;43(6):300–302. doi: 10.1111/j.1399-0004.1993.tb03822.x
  10. Wild A, Schillians N, Kumar M, et al. Scoliosis in Gordon’s syndrome. Eur Spine J. 2001;10(5):458–460. doi: 10.1007/s005860100265
  11. Botha SJ, Bütow KW. Gordon syndrome: literature review and a report of two cases. Cleft Palate Craniofac J. 2015;52(1):e18–22. doi: 10.1597/13-075
  12. Alisch F, Weichert A, Kalache K, et al. Familial Gordon syndrome associated with a PIEZO2 mutation. Am J Med Genet A. 2017;173(1):254–259. doi: 10.1002/ajmg.a.37997
  13. Roomaney IA, Walters J, Spencer C, et al. Gordon syndrome: dental implications and a case report. Spec Care Dentist. 2021;41(6):727–734. doi: 10.1111/scd.12615
  14. Halal F, Fraser FC. Camptodactyly, cleft palate, and club foot (the Gordon syndrome). A report of a large pedigree. J Med Genet. 1979;16(2):149–150. doi: 10.1136/jmg.16.2.149
  15. McMillin MJ, Beck AE, Chong JX, et al. Mutations in PIEZO2 cause Gordon syndrome, Marden-Walker syndrome, and distal arthrogryposis type 5. Am J Hum Genet. 2014;94(5):734–744. doi: 10.1016/j.ajhg.2014.03.015
  16. Becker K, Splitt M. A family with distal arthrogryposis and cleft palate: possible overlap between Gordon syndrome and Aase-Smith syndrome. Clin Dysmorphol. 2001;10(1):41–45. doi: 10.1097/00019605-200101000-00009
  17. Lai MM, Tettenborn MA, Hall JG, et al. A new form of autosomal dominant arthrogryposis. J Med Genet. 1991;28(10):701–703. doi: 10.1136/jmg.28.10.701
  18. Schrander-Stumpel CT, Höweler CJ, Reekers AD, et al. Arthrogryposis, ophthalmoplegia, and retinopathy: confirmation of a new type of arthrogryposis. J Med Genet. 1993;30(1):78–80. doi: 10.1136/jmg.30.1.78
  19. Friedman BD, Heidenreich RA. Distal arthrogryposis type IIB: further clinical delineation and 54-year follow-up of an index case. Am J Med Genet. 1995;58(2):125–127. doi: 10.1002/ajmg.1320580207
  20. Pallotta R, Ehresmann T, Fusilli P. Occurrence of Dandy-Walker anomaly in a familial case of distal arthogryposis type IIB. Am J Med Genet. 2000;95(5):477–481. doi: 10.1002/1096-8628(20001218)95:5<477::aid-ajmg13>3.0.co;2-m
  21. Beals RK, Weleber RG. Distal arthrogryposis 5: a dominant syndrome of peripheral contractures and ophthalmoplegia. Am J Med Genet A. 2004;131(1):67–70. doi: 10.1002/ajmg.a.30289
  22. Sahni J, Kaye SB, Fryer A, et al. Distal arthrogryposis type IIB: unreported ophthalmic findings. Am J Med Genet A. 2004;127A(1):35–39. doi: 10.1002/ajmg.a.20634
  23. Williams MS, Elliott CG, Bamshad MJ. Pulmonary disease is a component of distal arthrogryposis type 5. Am J Med Genet A. 2007;143A(7):752–756. doi: 10.1002/ajmg.a.31648
  24. Castori M, Rinaldi R, Barboni L, et al. Juvenile macular dystrophy and forearm pronation-supination restriction presenting with features of distal arthrogryposis type 5. Am J Med Genet A. 2009;149A(3):482–486. doi: 10.1002/ajmg.a.32668
  25. Coste B, Houge G, Murray MF, et al. Gain-of-function mutations in the mechanically activated ion channel PIEZO2 cause a subtype of distal arthrogryposis. Proc Natl Acad Sci USA. 2013;110(12):4667–4672. doi: 10.1073/pnas.1221400110
  26. Okubo M, Fujita A, Saito Y, et al. A family of distal arthrogryposis type 5 due to a novel PIEZO2 mutation. Am J Med Genet A. 2015;167A(5):1100–1106. doi: 10.1002/ajmg.a.36881
  27. Zapata-Aldana E, Al-Mobarak SB, Karp N, et al. Distal arthrogryposis type 5 and PIEZO2 novel variant in a Canadian family. Am J Med Genet A. 2019;179(6):1034–1041. doi: 10.1002/ajmg.a.61143
  28. Serra G, Antona V, Cannata C, et al. Distal Arthrogryposis type 5 in an Italian family due to an autosomal dominant gain-of-function mutation of the PIEZO2 gene. Ital J Pediatr. 2022;48(1). doi: 10.1186/s13052-022-01329-z
  29. Oliwa A, Hendson G, Longman C, et al. Lethal respiratory course and additional features expand the phenotypic spectrum of PIEZO2-related distal arthrogryposis type 5. Am J Med Genet A. 2022. doi: 10.1002/ajmg.a.63019
  30. Dai S, Dieterich K, Jaeger M, et al. Disability in adults with arthrogryposis is severe, partly invisible, and varies by genotype. Neurology. 2018;90(18):e1596–e1604. doi: 10.1212/WNL.0000000000005418
  31. Delle Vedove A, Storbeck M, Heller R, et al. Biallelic loss of proprioception-related PIEZO2 causes muscular atrophy with perinatal respiratory distress, arthrogryposis, and scoliosis. Am J Hum Genet. 2016;99(6):1406–1408. doi: 10.1016/j.ajhg.2016.11.009
  32. Alper SL. Genetic diseases of PIEZO1 and PIEZO2 dysfunction. Curr Top Membr. 2017;79:97–134. doi: 10.1016/bs.ctm.2017.01.001
  33. Chesler AT, Szczot M, Bharucha-Goebel D, et al. The role of PIEZO2 in human mechanosensation. N Engl J Med. 2016;375(14):1355–1364. doi: 10.1056/NEJMoa1602812
  34. Mahmud AA, Nahid NA, Nassif C, et al. Loss of the proprioception and touch sensation channel PIEZO2 in siblings with a progressive form of contractures. Clin Genet. 2017;91(3):470–475. doi: 10.1111/cge.12850
  35. Haliloglu G, Becker K, Temucin C, et al. Recessive PIEZO2 stop mutation causes distal arthrogryposis with distal muscle weakness, scoliosis and proprioception defects. J Hum Genet. 2017;62(4):497–501. doi: 10.1038/jhg.2016.153
  36. Behunova J, GerykovaBujalkova M, Gras G, et al. Distal arthrogryposis with impaired proprioception and touch: description of an early phenotype in a boy with compound heterozygosity of PIEZO2 mutations and review of the literature. Mol Syndromol. 2019;9(6):287–294. doi: 10.1159/000494451
  37. Yamaguchi T, Takano K, Inaba Y, et al. PIEZO2 deficiency is a recognizable arthrogryposis syndrome: a new case and literature review. Am J Med Genet A. 2019;179(6):948–957. doi: 10.1002/ajmg.a.61142
  38. Oakley-Hannibal E, Ghali N, Pope FM, et al. A neuromuscular disorder with homozygosity for PIEZO2 gene variants: an important differential diagnosis for kyphoscoliotic Ehlers-Danlos syndrome. Clin Dysmorphol. 2020;29(1):69–72. doi: 10.1097/MCD.0000000000000304
  39. Klaniewska M, Jedrzejowska M, Rydzanicz M, et al. Case report: further delineation of neurological symptoms in young children caused by compound heterozygous mutation in the PIEZO2 gene. Front Genet. 2021;12. doi: 10.3389/fgene.2021.620752
  40. Markova TV, Dadali EL, Nikitin SS, et al. Clinical and genetic characteristics of distal arthrogryposis caused by mutations in the PIEZO2 gene. Neuromuscular Diseases. 2021;11(2):48–55. (In Russ.) doi: 10.17650/2222-8721-2021-11-2-48-55

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Musculoskeletal pathologies in patients with distal arthrogryposis type 3

下载 (67KB)
3. Fig. 2. Facial dysmorphism in patients with distal arthrogryposis type 3

下载 (34KB)
4. Fig. 3. Clinical manifestations of facial dysmorphism in patients with distal arthrogryposis type 5

下载 (46KB)
5. Fig. 4. Musculoskeletal pathologies in patients with distal arthrogryposis type 5

下载 (120KB)
6. Fig. 5. Eye pathologies in patients with distal arthrogryposis type 5

下载 (27KB)
7. Fig. 6. Musculoskeletal pathologies in patients with distal arthrogryposis and impaired proprioception and tactile sense

下载 (73KB)
8. Fig. 7. Clinical manifestations in the nervous system of patients with distal arthrogryposis and impaired proprioception and tactile sense

下载 (45KB)

版权所有 © Chernyavskaya-Haukka V.V., Agranovich O.E., 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».