Mirabegron in the treatment of neurogenic detrusor overactivity: pharmacological and clinical aspects

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The main cause of the impaired storage function of the bladder in patients with neurogenic dysfunctions of the lower urinary tract is detrusor overactivity, clinically manifested by symptoms of an overactive bladder. The article presents data on the epidemiology, pathogenesis, clinical course and modern approaches to the treatment of detrusor overactivity in neurological patients. It is emphasized that the most important aspect of the clinical course of neurogenic detrusor overactivity is the high risk of upper urinary tract dysfunction, and reducing the threat of kidney damage is the main goal of treating such patients. Pharmacological and clinical aspects of the use of the β3-adrenoreceptor agonist mirabegron in patients with neurogenic bladder dysfunctions are presented. The results of experimental and clinical studies of its use in the treatment of neurogenic detrusor overactivity are presented. A high safety profile of the drug is noted. It is shown that the mechanisms of the therapeutic effect of mirabegron in neurogenic detrusor overactivity include a decrease in detrusor tone, inhibition of spontaneous myocyte contractions, and a decrease in myogenic and urotheliogenic mechanosensory afferent activity. The features of the clinical and urodynamic effects of mirabegron in patients with neurogenic detrusor overactivity in various neurological diseases — multiple sclerosis, Parkinson’s disease, spinal cord injury — are highlighted. The leading role of the results of urodynamic research in choosing the treatment tactics for patients with neurogenic detrusor overactivity is emphasized.

About the authors

Igor V. Kuzmin

Academician I.P. Pavlov First St. Petersburg State Medical University

Author for correspondence.
Email: kuzminigor@mail.ru
ORCID iD: 0000-0002-7724-7832
SPIN-code: 2684-4070

Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

References

  1. All-Russian public organization “Russian Society of Urologists”. Neurogenic dysfunction of the lower urinary tract. Clinical recommendations of the Ministry of Health of the Russian Federation. 2020. 48 p. (In Russ.)
  2. Nikolaev AM, Protoshchak VV, Paronnikov MV, et al. Principles of diagnosis and treatment of post-traumatic neurogenic lower urinary tract dysfunction. Urology reports (St. Petersburg). 2024;14(4): 435–447. doi: 10.17816/uroved630073
  3. Kuzmin IV. Dysfunctions of the lower urinary tract in patients with multiple sclerosis. Pathogenesis, symptomatics, diagnosis. Urology reports (St. Petersburg). 2023;13(2):145–156. doi: 10.17816/uroved529654 EDN: GMRFMI
  4. McDonald C, Winge K, Burn DJ. Lower urinary tract symptoms in Parkinson’s disease: Prevalence, aetiology and management. Parkinsonism Relat Disord. 2017;35:8–16. doi: 10.1016/j.parkreldis.2016.10.024
  5. Kasyan GR, Dreval RO, Krivoborodov GG, et al. Socio-economic aspects of neurogenic dysfunctions in urology. Urologiia. 2020;(5): 127–132. doi: 10.18565/urology.2020.5.127-132 EDN: LKMZZH
  6. Blok B, Castro-Diaz D, Del Popolo G, et al. Guideline of European Urological Association. 2024. Available from: https://uroweb.org/guideline/neuro-urology
  7. Gajewski JB, Schurch B, Hamid R, et al. An International Continence Society (ICS) report on the terminology for adult neurogenic lower urinary tract dysfunction (ANLUTD). Neurourol Urodyn. 2018;37(3):1152–1161. doi: 10.1002/nau.23397
  8. Ruffion A, Castro-Diaz D, Patel H, et al. Systematic review of the epidemiology of urinary incontinence and detrusor overactivity among patients with neurogenic overactive bladder. Neuroepidemiology. 2013;41(3–4):146–155. doi: 10.1159/000353274
  9. Kuzmin IV. Pathogenesis, clinical course and treatment of overactive bladder [dissertation]. Saint Petersburg; 2007. EDN: QECRJB (In Russ.)
  10. Quarto G, Autorino R, Gallo A, et al. Quality of life in women with multiple sclerosis and overactive bladder syndrome. Int Urogynecol J Pelvic Floor Dysfunct. 2007;18(2):189–194. doi: 10.1007/s00192-006-0131-9
  11. Mehnert U, Chartier-Kastler E, de Wachter S, et al. The management of urine storage dysfunction in the neurological patient. SN Compr Clin Med. 2019;(1):160–182. doi: 10.1007/s42399-018-0005-8
  12. Averbeck MA, Madersbacher H. Follow-up of the neuro-urological patient: a systematic review. BJU Int. 2015;115(S6):39–46. doi: 10.1111/bju.13084
  13. Kavanagh A, Baverstock R, Campeau L, et al. Canadian Urological Association guideline: Diagnosis, management, and surveillance of neurogenic lower urinary tract dysfunction — Full text. Can Urol Assoc J. 2019;13(6):E157–E176. doi: 10.5489/cuaj.5912
  14. Medina-Polo J, Adot JM, Allué M, et al. Consensus document on the multidisciplinary management of neurogenic lower urinary tract dysfunction in patients with multiple sclerosis. Neurourol Urodyn. 2020;39(2):762–770. doi: 10.1002/nau.24276
  15. Madersbacher H, Mürtz G, Stöhrer M. Neurogenic detrusor overactivity in adults: a review on efficacy, tolerability and safety of oral antimuscarinics. Spinal Cord. 2013;51(6):432–441. doi: 10.1038/sc.2013.19
  16. Kuzmin IV, Kuzmina SV. Anticholinergic therapy of an overactive bladder: clinical practice aspects. Russian Medical Inquiry. 2021;5(5):273–279. doi: 10.32364/2587-6821-2021-5-5-273-279 EDN: WABDWM
  17. Kulchavenya EV, Kholtobin DP. Overactive bladder in a complicated patient: which drug to choose? Urologiia. 2021;(1):120–125. doi: 10.18565/urology.2021.1.120-12 EDN: XCGKDU
  18. Kuzmin IV, Kuzmina SV. Treatment of urinary disorders in patients with multiple sclerosis: A review. Consilium Medicum. 2024;26(7):445–451. doi: 10.26442/20751753.2024.7.202887 EDN: AEIISS
  19. Hegde SS. Muscarinic receptors in the bladder: from basic research to therapeutics. Br J Pharmacol. 2006;147(S2):S80–87. doi: 10.1038/sj.bjp.0706560
  20. Pontari MA, Braverman AS, Ruggieri MR Sr. The M2 muscarinic receptor mediates in vitro bladder contractions from patients with neurogenic bladder dysfunction. Am J Physiol Regul Integr Comp Physiol. 2004;286(5):R874–880. doi: 10.1152/ajpregu.00391.2003
  21. Chancellor M, Boone T. Anticholinergics for overactive bladder therapy: central nervous system effects. CNS Neurosci Ther. 2012;18(2):167–174. doi: 10.1111/j.1755-5949.2011.00248.x
  22. Kuzmin IV, Slesarevskaya MN. Anticholinergic bladder therapy: geriatric aspects. Clinical Gerontology. 2021;27(11–12):21–34. doi: 10.26347/1607-2499202111-12021-034 EDN: ZHMMTR
  23. Andretta E, Finazzi Agrò E, Calabrese M, et al. Antimuscarinics for neurogenic overactive bladder in multiple sclerosis: real-life data. Ther Adv Urol. 2022;14:17562872221122484. doi: 10.1177/17562872221122484
  24. Kuzmin IV. Personalized approach to pharmacotherapy of overactive bladder. Urology reports (St. Petersburg). 2023;13(3):267–282. doi: 10.17816/uroved569404 EDN: XJVYUG
  25. Manack A, Motsko SP, Haag-Molkenteller C, et al. Epidemiology and healthcare utilization of neurogenic bladder patients in a US claims database. Neurourol Urodyn. 2011;30(3):395–401. doi: 10.1002/nau.21003
  26. Krivoborodov GG, Kuzmin IV, Romikh VV. Аbobotulinum toxin A (Dysport®) for the treatment of neurogenic detrusor overactivity. Urologiia. 2023;(2):122–129. doi: 10.18565/urology.2023.2.122-129 EDN: CBOGMK
  27. Chapple CR, Dvorak V, Radziszewski P, Van Kerrebroeck P, et al. A phase II dose-ranging study of mirabegron in patients with overactive bladder. Int Urogynecol J. 2013;24(9):1447–1458. doi: 10.1007/s00192-013-2042-x
  28. Nitti VW, Chapple CR, Walters C, et al. Safety and tolerability of the β3 -adrenoceptor agonist mirabegron, for the treatment of overactive bladder: results of a prospective pooled analysis of three 12-week randomised Phase III trials and of a 1-year randomised Phase III trial. Int J Clin Pract. 2014;68(8):972–985. doi: 10.1111/ijcp.12433
  29. Russian Society of Obstetricians and Gynecologists, All-Russian Public Organization “Russian Society of Urologists”, All-Russian Public Organization “Russian Association of Gerontologists and Geriatricians”. Urinary incontinence. clinical recommendations of the Ministry of Health of the Russian Federation. 2024. (In Russ.)
  30. Harding CK, Lapitan MC, Arlandis S, et al. Management of non-neurogenic female lower urinary tract symptoms (LUTS). EAU Guideline. European Association of Urology; 2024. Available from: https://uroweb.org/guidelines/non-neurogenic-female-luts
  31. Krauwinkel W, Dickinson J, Schaddelee M, et al. The effect of mirabegron, a potent and selective β3-adrenoceptor agonist, on the pharmacokinetics of CYP2D6 substrates desipramine and metoprolol. Eur J Drug Metab Pharmacokinet. 2014;39(1):43–52. doi: 10.1007/s13318-013-0133-1
  32. Liao C-H, Kuo H-C. High satisfaction with direct switching from antimuscarinics to mirabegron in patients receiving stable antimuscarinic treatment. Medicine (Baltimore). 2016;95(45):e4962. doi: 10.1097/MD.000000000000496238
  33. Dyakov IN, Kasyan GR. Pharmacoeconomic feasibility of using Mirabegron in patients with overactive bladder. Good Clinical Practice. 2021;(1):35–45. doi: 10.37489/2588-0519-2021-1-35-45 EDN: EESOPZ
  34. Kolbin AS, Vilyum IA, Proskurin MA, Balykina YuE. Pharmacoeconomic analysis of using Mirabegron to treat overactive bladder in the setting of the Russian Federation health care. Urologiia. 2016;(1:)32–39. EDN: VTRFFH
  35. Fujimura T, Tamura K, Tsutsumi T, et al. Expression and possible functional role of the beta3-adrenoceptor in human and rat detrusor muscle. J Urol. 1999;161(2):680–685. doi: 10.1016/S0022-5347(01)61994-3
  36. Takeda M, Obara K, Mizusawa T, et al. Evidence for beta3-adrenoceptor subtypes in relaxation of the human urinary bladder detrusor: analysis by molecular biological and pharmacological methods. J Pharmacol Exp Ther. 1999;288(3):1367–1373. doi: 10.1016/S0022-3565(24)38094-2
  37. Andersson K-E, Arner A. Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev. 2004;84(3):935–986. doi: 10.1152/physrev.00038.2003
  38. Aizawa N, Ichihara K, Fukuhara H, et al. Characteristics of the mechanosensitive bladder afferent activities in relation with microcontractions in male rats with bladder outlet obstruction. Sci Rep. 2017;7(1):7646. doi: 10.1038/s41598-017-07898-y
  39. Igawa Y, Aizawa N, Michel MC. β3-Adrenoceptors in the normal and diseased urinary bladder — What are the open questions? Br J Pharmacol. 2019;176(14):2525–2538. doi: 10.1111/bph.14658
  40. Michel MC, Korstanje C. β3-Adrenoceptor agonists for overactive bladder syndrome: Role of translational pharmacology in a repositioning clinical drug development project. Pharmacol Ther. 2016;159:66–82. doi: 10.1016/j.pharmthera.2016.01.007
  41. Okeke K, Angers S, Bouvier M, Michel MC. Agonist-induced desensitisation of β3-adrenoceptors: Where, when, and how? Br J Pharmacol. 2019;176(14):2539–2558. doi: 10.1111/bph.14633
  42. D’ Agostino G, Maria Condino A, Calvi P. Involvement of β3-adrenoceptors in the inhibitory control of cholinergic activity in human bladder: Direct evidence by [(3)H]-acetylcholine release experiments in the isolated detrusor. Eur J Pharmacol. 2015;758:115–122. doi: 10.1016/j.ejphar.2015.03.074
  43. Coelho A, Antunes-Lopes T, Gillespie J, Cruz F. Beta-3 adrenergic receptor is expressed in acetylcholine-containing nerve fibers of the human urinary bladder: An immunohistochemical study. Neurourol Urodyn. 2017;36(8):1972–1980. doi: 10.1002/nau.23224
  44. Kwon J, Kim DY, Cho KJ, et al. Pathophysiology of overactive bladder and pharmacologic treatments including β3-adrenoceptor agonists — basic research perspectives. Int Neurourol J. 2024;28(S1):S2–33. doi: 10.5213/inj.2448002.001
  45. Nitti VW, Rosenberg S, Mitcheson DH, et al. Urodynamics and safety of the β3-adrenoceptor agonist Mirabegron in males with lower urinary tract symptoms and bladder outlet obstruction. J Urol. 2013;190(4):1320–1327. doi: 10.1016/j.juro.2013.05.062
  46. Kaidoh K, Igawa Y, Takeda H, et al. Effects of selective beta2 and beta3-adrenoceptor agonists on detrusor hyperreflexia in conscious cerebral infarcted rats. J Urol. 2002;168(3):1247–1252. doi: 10.1016/S0022-5347(05)64634-4
  47. Beauval JB, Guilloteau V, Cappellini M, et al. Comparison of tht effects of β3-adrenoceptor agonism on urinary bladder function in conscious, anesthetized, and spinal cord injured rats. Neurourol Urodyn. 2015;34(6):578–585. doi: 10.1002/nau.22629
  48. Wada N, Shimizu T, Takai S, et al. Combinational effects of muscarinic receptor inhibition and β3-adrenoceptor stimulation on neurogenic bladder dysfunction in rats with spinal cord injury. Neurourol Urodyn. 2017;36(4):1039–1045. doi: 10.1002/nau.23066
  49. El Helou E, Labaki C, Chebel R, et al. The use of mirabegron in neurogenic bladder: a systematic review. World J Urol. 2020;38(10):2435–2442. doi: 10.1007/s00345-019-03040-x
  50. Elkhashab MM, Alqahtani AM, Kim MH, et al. Safety and efficacy of beta-3 adrenergic agonists in treating neurogenic lower urinary tract dysfunction: A systematic review and meta-analysis. Investig Clin Urol. 2024;65(3):217–229. doi: 10.4111/icu.20230271
  51. Zhou Z, Wang X, Li X, Liao L. Detrusor relaxing agents for neurogenic detrusor overactivity: a systematic review, meta-analysis and network meta-analysis. BJU Int. 2024;133(1):25–33. doi: 10.1111/bju
  52. Brucker BM, Jericevic D, Rude T, et al. Mirabegron versus solifenacin in multiple sclerosis patients with overactive bladder symptoms: A prospective comparative nonrandomized study. Urology. 2020;145:94–99. doi: 10.1016/j.urology.2020.08.008
  53. Glykas I, Fragkoulis C, Mitsikostas DD, et al. B3 agonists or anticholinergics in the treatment of the lower urinary tract dysfunction in patients with multiple sclerosis? — A randomized study. World J Urol. 2021;39(8):3049–3056. doi: 10.1007/s00345-020-03555-8
  54. Mut SE, Selcuk F, İncirli SU, Delibas S. Efficacy and safety of mirabegron add-on therapy after failure with solifenacin in multiple sclerosis patients with overactive bladder: A pilot study. Clin Neuropharmacol. 2024;47(4):109–112. doi: 10.1097/WNF.0000000000000596
  55. Zachariou A, Filiponi M, Baltogiannis D, et al. Effective treatment of neurogenic detrusor overactivity in multiple sclerosis patients using desmopressin and mirabegron. Can J Urol. 2017;24(6): 9107–9113.
  56. Akkoc Y. Efficacy and safety of mirabegron for treatment of neurogenic detrusor overactivity in adults with spinal cord injury or multiple sclerosis: a systematic review. Spinal Cord. 2022;60(10):854–861. doi: 10.1038/s41393-022-00853-3
  57. Peyronnet B, Vurture G, Palma J-A, et al. Mirabegron in patients with Parkinson disease and overactive bladder symptoms: A retrospective cohort. Parkinsonism Relat Disord. 2018;57:22–26. doi: 10.1016/j.parkreldis.2018.07.005
  58. Gubbiotti M, Conte A, Di Stasi SM, et al. Feasibility of mirabegron in the treatment of overactive bladder in patients affected by Parkinson’s disease: A pilot study. Ther Adv Neurol Disord. 2019;12:1756286419843458. doi: 10.1177/1756286419843458
  59. Cho SY, Jeong SJ, Lee S, et al. Mirabegron for treatment of overactive bladder symptoms in patients with Parkinson’s disease: A double-blind, randomized placebo-controlled trial (Parkinson’s Disease Overactive bladder Mirabegron, PaDoMi study). Neurourol Urodyn. 2021;40(1):286–294. doi: 10.1002/nau.24552
  60. Moussa M, Chakra MA, Dabboucy B, et al. The safety and effectiveness of Mirabegron in Parkinson’s disease patients with overactive bladder: a randomized controlled trial. Scand J Urol. 2022;56(1):66–72. doi: 10.1080/21681805.2021.1990994
  61. Madan A, Brown T, Ray S, et al. A novel trial of Mirabegron and behavioral modification including pelvic floor exercise for overactive bladder in Parkinson’s disease (MAESTRO). Cureus. 2022;14(11): e31818. doi: 10.7759/cureus.31818
  62. Cheng B, Huang S, Huang Q, et al. The efficacy and safety of medication for treating overactive bladder in patients with Parkinson’s disease: a meta-analysis and systematic review of randomized double-blind placebo-controlled trials. Int Urogynecol J. 2023;34(9):2207–2216. doi: 10.1007/s00192-023-05528-y
  63. Wöllner J, Pannek J. Initial experience with the treatment of neurogenic detrusor overactivity with a new β-3 agonist (Mirabegron) in patients with spinal cord injury. Spinal Cord. 2016;54(1):78–82. doi: 10.1038/sc.2015.195
  64. Welk B, Hickling D, McKibbon M, et al. A pilot randomized-controlled trial of the urodynamic efficacy of Mirabegron for patients with neurogenic lower urinary tract dysfunction. Neurourol Urodyn. 2018;37(8):2810–2817. doi: 10.1002/nau.23774
  65. Krhut J, Borovička V, Bílková K, et al. Efficacy and safety of Mirabegron for the treatment of neurogenic detrusor overactivity — Prospective, randomized, double-blind, placebo-controlled study. Neurourol Urodyn. 2018;37(7):2226–2233. doi: 10.1002/nau.23566
  66. Trbovich M, Romo T, Polk M, et al. The treatment of neurogenic lower urinary tract dysfunction in persons with spinal cord injury: An open label, pilot study of anticholinergic agent vs. Mirabegron to evaluate cognitive impact and efficacy. Spinal Cord Ser Cases. 2021;7(1):50. doi: 10.1038/s41394-021-00413-6
  67. Vasudeva P, Prasad V, Yadav S, et al. Efficacy and safety of Mirabegron for the treatment of neurogenic detrusor overactivity resulting from traumatic spinal cord injury: A prospective study. Neurourol Urodyn. 2021;40(2):666–671. doi: 10.1002/nau.24604
  68. Han S-H, Cho IK, Jung JH, et al. Long-term efficacy of Mirabegron add-on therapy to antimuscarinic agents in patients with spinal cord injury. Ann Rehabil Med. 2019;43(1):54–61. doi: 10.5535/arm.2019.43.1.54
  69. Krebs J, Pannek J, Rademacher F, Wöllner J. Real-world effects of Mirabegron in patients with chronic neurogenic detrusor overactivity — A retrospective cohort study. Res Rep Urol. 2020;12:187–192. doi: 10.2147/RRU.S253713
  70. Park JS, Lee YS, Lee CN, et al. Efficacy and safety of Mirabegron, a β3-adrenoceptor agonist, for treating neurogenic bladder in pediatric patients with spina bifida: a retrospective pilot study. World J Urol. 2019;37(8):1665–1670. doi: 10.1007/s00345-018-2576-0
  71. Sager C, Sanmartino M, Burek C, et al. Efficacy and safety of Mirabegron as adjuvant treatment in children with refractory neurogenic bladder dysfunction. J Pediatr Urol. 2020;16(5):655.e1–655.e6. doi: 10.1016/j.jpurol.2020.07.020
  72. Baka-Ostrowska M, Bolong DT, Persu C, et al. Efficacy and safety of Mirabegron in children and adolescents with neurogenic detrusor overactivity: An open-label, phase 3, dose-titration study. Neurourol Urodyn. 2021;40(6):1490–1499. doi: 10.1002/nau.24657
  73. van Veen FEE, Schotman M, ‘t Hoen LA, et al. Long-term beneficial effects of Mirabegron in pediatric patients with therapy-refractory neurogenic lower urinary tract dysfunction. J Pediatr Urol. 2023;19(6):753.e1–753.e8. doi: 10.1016/j.jpurol.2023.08.015
  74. Przydacz M, Chlosta P, Corcos J. Recommendations for urological follow-up of patients with neurogenic bladder secondary to spinal cord injury. Int Urol Nephrol. 2018;50(6):1005–1016. doi: 10.1007/s11255-018-1852-7
  75. de Groat WC. A neurologic basis for the overactive bladder. Urology. 1997;50(6S1):36–52. doi: 10.1016/s0090-4295(97)00587-6
  76. Andersson K-E. Antimuscarinic mechanisms and the overactive detrusor: an update. Eur Urol. 2011;59(3):377–386. doi: 10.1016/j.eururo.2010.11.040

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Localization of β3-adrenoceptors in the bladder wall.

Download (271KB)
3. Fig. 2. Mechanism of the therapeutic effect of β3-adrenoceptor agonists in patients with detrusor overactivity and overactive bladder.

Download (139KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».