Contemporary view on the microbiota of kidney stones and urine in patients with urolithiasis: a narrative review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Urolithiasis is a highly prevalent disease with a frequent recurrent course, indicating the limited effectiveness of existing preventive and therapeutic strategies. The revision of the long-standing paradigm of urinary tract sterility, enabled by the advent of high-throughput sequencing technologies, has led to the emergence of the urobiome concept as a complex ecosystem involved in the pathogenesis of urolithiasis. The present review systematizes current data on the role of the microbiota of urine and renal calculi in the pathogenesis of urolithiasis. The analysis demonstrated that urobiome dysbiosis, characterized by reduced alpha diversity and altered proportions of major taxa, represents a pathogenetic factor of lithogenesis rather than its consequence. Metagenomic studies show that the microbiome of kidney stones consists of specific bacterial consortia encapsulated within the mineral matrix. It has been established that different bacterial taxa directly influence stone formation through the production of enzymes initiating the formation of struvite stones (urease) and oxalate-degrading enzymes, with Oxalobacter formigenes being one of the principal producers. An important role in pathogenesis is played by the formation of bacterial biofilms, which serve as a scaffold for microbial colonization and subsequent crystallization. In addition, the role of the gut–kidney axis has been identified, in which intestinal dysbiosis triggers systemic inflammation, disruption of lithogenic metabolite homeostasis, and increased intestinal barrier permeability, collectively creating conditions favorable for lithogenesis. Thus, the available data provide a contemporary and in-depth understanding of the pathogenesis of urolithiasis, in which the microbiota is considered an active pathogenetic factor. Integration of data on the taxonomic and functional status of the urobiome opens new prospects for the development of innovative diagnostic, prognostic, and therapeutic strategies aimed at correcting dysbiosis for the treatment and prevention of urolithiasis recurrence.

About the authors

Aleksei M. Pushkarev

Bashkir State Medical University

Author for correspondence.
Email: pushkarev.urobsmu@gmail.com
ORCID iD: 0009-0002-6826-3133
SPIN-code: 8521-6208

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Ufa

Sabir S. Sabirzyanov

Republican Clinical Hospital named after G.G. Kuvatov

Email: sobir08-97@mail.ru
ORCID iD: 0000-0003-4044-0396

MD

Russian Federation, Ufa

Anna V. Artemeva

Bashkir State Medical University

Email: fruitoanya123@yandex.ru
ORCID iD: 0009-0004-6658-8529

MD

Russian Federation, Ufa

Yurii L. Isekeyev

Izhevsk State Medical Academy

Email: tarelkailimon@mail.ru
ORCID iD: 0009-0001-0084-8795

MD

Russian Federation, Izhevsk

Valeria A. Popkova

Izhevsk State Medical Academy

Email: lera.lily@gmail.com
ORCID iD: 0009-0007-1257-123X

MD

Russian Federation, Izhevsk

Aleksandra I. Efremova

Izhevsk State Medical Academy

Email: efremovaaleks@yandex.ru
ORCID iD: 0009-0008-1278-9172

MD

Russian Federation, Izhevsk

Adelina I. Kharrasova

Bashkir State Medical University

Email: Harrasovaadel150503@gmail.com
ORCID iD: 0009-0001-1820-3653
Russian Federation, Ufa

Yasmina A. Zaripova

Bashkir State Medical University

Email: zaripova_ya2002@mail.ru
ORCID iD: 0009-0001-3849-0047
Russian Federation, Ufa

Karina R. Romanova

Pirogov Russian National Research Medical University

Email: Rudolflukashin555@gmail.com
ORCID iD: 0009-0007-0943-2327

MD

Russian Federation, Moscow

Anita V. Lynova

Academician I.P. Pavlov First St. Petersburg State Medical University

Email: afugl@bk.ru
ORCID iD: 0009-0004-5840-9981

MD

Russian Federation, Saint Petersburg

Aliya I. Nasypova

Izhevsk State Medical Academy

Email: nasypovaaliyaxi@gmail.com
ORCID iD: 0009-0008-7279-2015

MD

Russian Federation, Izhevsk

Denis D. Kaerov

Izhevsk State Medical Academy

Email: kaerovd@list.ru
ORCID iD: 0009-0009-2613-2240

MD

Russian Federation, Izhevsk

Alina A. Rasulova

The First Sechenov Moscow State Medical University

Email: alina.ras1223@gmail.com
ORCID iD: 0009-0006-4207-7315

MD

Russian Federation, Moscow

References

  1. Protoshchak VV, Paronnikov MV, Orlov DN, et al. Medical and economic rationale for the use of modern methods of treating urolithiasis. Experimental and Clinical Urology. 2019;(3):12–18. doi: 10.29188/2222-08543-2019-11-3-12-18 EDN: OKICOS
  2. Yao W, Wei X, Jing Q, et al. Epidemiological trends of urolithiasis in working-age populations: Findings from the global burden of disease study 1990–2021. PLoS One. 2025;20(7):e0327343. doi: 10.1371/journal.pone.0327343 EDN: FALBEA
  3. Lang J, Narendrula A, El-Zawahry A, et al. Global trends in incidence and burden of urolithiasis from 1990 to 2019: an analysis of global burden of disease study data. Eur Urol Open Sci. 2022;35:37–46. doi: 10.1016/j.euros.2021.10.008 EDN: NTJEGZ
  4. Li S, Huang X, Liu J, et al. Trends in the incidence and DALYs of urolithiasis from 1990 to 2019: results from the global burden of disease study 2019. Front Public Health. 2022;10:825541. doi: 10.3389/fpubh.2022.825541 EDN: XHDOBS
  5. Zubkov IV, Biteev VKh, Korotaev PN, et al. Epidemiology of urolithiasis and results of a pilot study on the use of fibrocalicolithotripsy. RMJ. 2021;(8):7–10.
  6. Slesarevskaya MN, Kuzmin IV, Zhumadillaev KG, et al. Microbiome and urine microbiota: modern concepts and gender features. Urology Reports (St.-Petrsburg). 2022;12(2):157–165. doi: 10.17816/uroved109278 EDN: VOVNVA
  7. Pastuszka A, Tobor S, Łoniewski I, et al. Rewriting the urinary tract paradigm: the urobiome as a gatekeeper of host defense. Mol Biol Rep. 2025;52(1):497. doi: 10.1007/s11033-025-10609-w EDN: DTRHPR
  8. Cumpanas AA, Bratu OG, Bardan RT, et al. Urinary microbiota–are we ready for prime time? a literature review of study methods’ critical steps in avoiding contamination and minimizing biased results. Diagnostics (Basel). 2020;10(6):343. doi: 10.3390/diagnostics10060343 EDN: RUPSJQ
  9. Evdokimova NV, Chernen’kaya TV. Modern view on the microbiome of the urinary tract. Pathol Physiol Exp Ther. 2024;68(1):138–144. doi: 10.25557/0031-2991.2024.01.138-144
  10. Collins L, Sathiananthamoorthy S, Rohn J, et al. A revalidation and critique of assumptions about urinary sample collection methods, specimen quality and contamination. Int Urogynecol J. 2020;31(6):1255–1262. doi: 10.1007/s00192-020-04272-x EDN: BADSXI
  11. Xie J, Huang JS, Huang XJ, et al. Profiling the urinary microbiome in men with calcium-based kidney stones. BMC Microbiol. 2020;20(1):41. doi: 10.1186/s12866-020-01734-6 EDN: MBGWMG
  12. Liu H, Hu Q, Yan Q, et al. Alterations in urinary microbiota composition in urolithiasis patients: insights from 16S rRNA gene sequencing. Front Cell Infect Microbiol. 2023;13:1266446. doi: 10.3389/fcimb.2023.1266446 EDN: AFVBDN
  13. Xie J, Zhang XQ, Guo JN, et al. The urinary microbiota composition and functionality of calcium oxalate stone formers. Front Cell Infect Microbiol. 2024;14:1394955. doi: 10.3389/fcimb.2024.1394955 EDN: SLWAKT
  14. Hong SY, Yang YY, Xu JZ, et al. The renal pelvis urobiome in the unilateral kidney stone patients revealed by 2bRAD-M. J Transl Med. 2022;20(1):431. doi: 10.1186/s12967-022-03639-6 EDN: KOFCLN
  15. Kramer H, Kuffel G, Thomas-White K, et al. Diversity of the midstream urine microbiome in adults with chronic kidney disease. Int Urol Nephrol. 2018;50(6):1123–1130. doi: 10.1007/s11255-018-1860-7 EDN: GYZMHM
  16. Lewis ZJ, Scott A, Madden C, et al. Evaluating urine volume and host depletion methods to enable genome-resolved metagenomics of the urobiome. Microbiome. 2025;13(1):199. doi: 10.1186/s40168-025-02191-x EDN: CYSUHE
  17. Pohl HG, Groah SL, Pérez-Losada M, et al. The urine microbiome of healthy men and women differs by urine collection method. Int Neurourol J. 2020;24(1):41–51. doi: 10.5213/inj.1938244.122 EDN: TXWPKH
  18. Nardelli C, Aveta A, Pandolfo SD, et al. Microbiome profiling in bladder cancer patients using the first-morning urine sample. Eur Urol Open Sci. 2024;59:18–26. doi: 10.1016/j.euros.2023.11.003 EDN: XLWGRE
  19. Liu F, Zhang N, Jiang P, et al. Characteristics of the urinary microbiome in kidney stone patients with hypertension. J Transl Med. 2020;18(1):130. doi: 10.1186/s12967-020-02282-3 EDN: HGXCGH
  20. Hong SY, Miao LT, Yang YY, et al. A comparison of male and female renal pelvis urobiome of unilateral stone formers using 2bRAD-M. BMC Microbiol. 2024;24(1):456. doi: 10.1186/s12866-024-03618-5 EDN: EWRRKX
  21. Graells T, Lin YT, Ahmad S, et al. The urinary microbiome in association with diabetes and diabetic kidney disease: A systematic review. PLoS One. 2025;20(1): e0317960. doi: 10.1371/journal.pone.0317960 EDN: OUQUTY
  22. Yang Y, Miao L, Lu Y, et al. The genetics of urinary microbiome, an exploration of the trigger in calcium oxalate stone. Front Genet. 2023;14:1260278. doi: 10.3389/fgene.2023.1260278 EDN: ZXCDVW
  23. Lemberger U, Pjevac P, Hausmann B, et al. The microbiome of kidney stones and urine of patients with nephrolithiasis. Urolithiasis. 2023;51(1):27. doi: 10.1007/s00240-022-01403-5 EDN: TDANGT
  24. Chorbińska J, Krajewski W, Karpiński P, et al. Comparison of the microbiome of bladder urine, upper urinary tract urine, and kidney stones in patients with urolithiasis. Cent European J Urol. 2025;78(2):206–220. doi: 10.5173/ceju.2025.0020 EDN: ACCGKO
  25. Coffey EL, Gomez AM, Burton EN, et al. Characterization of the urogenital microbiome in Miniature Schnauzers with and without calcium oxalate urolithiasis. J Vet Intern Med. 2022;36(4):1341–1352. doi: 10.1111/jvim.16482 EDN: YVVFKU
  26. Fargue S, Suryavanshi M, Wood KD, et al. Inducing oxalobacter formigenes colonization reduces urinary oxalate in healthy adults. Kidney Int Rep. 2025;10(5):1518–1528. doi: 10.1016/j.ekir.2025.02.004 EDN: TIEFHF
  27. Gao H, Lin J, Xiong F, et al. Urinary microbial and metabolomic profiles in kidney stone disease. Front Cell Infect Microbiol. 2022;12:953392. doi: 10.3389/fcimb.2022.953392 EDN: RGQLNM
  28. Grases F, Costa-Bauzá A, Julià F, et al. Evidence of bacterial imprints in different types of non-struvite kidney stones. BMC Urol. 2025;25(1):63. doi: 10.1186/s12894–025–01755–1 EDN: NFQBLU
  29. Saw JJ, Sivaguru M, Wilson EM, et al. In vivo entombment of bacteria and fungi during calcium oxalate, brushite, and struvite urolithiasis. Kidney360. 2021;2(2):298–311. doi: 10.34067/KID.0006942020 EDN: AANOQF
  30. Halinski A, Bhatti KH, Boeri L, et al. Spectrum of bacterial pathogens from urinary infections associated with struvite and metabolic stones. Diagnostics (Basel). 2023;13(1):80. doi: 10.3390/diagnostics13010080 EDN: KCIIQD
  31. Al-Rubaeaee A, Hameed ZC, Al-Tamemi S. Estimation of some plant extract activity against bacterial cystitis isolated from urinary tract infection. In: Update on Bladder Cancer. IntechOpen; 2023. doi: 10.5772/intechopen.107514
  32. Manzoor MA, Singh B, Agrawal AK, et al. Morphological and micro-tomographic study on evolution of struvite in synthetic urine infected with bacteria and investigation of its pathological biomineralization. PLoS One. 2018;13(8): e0202306. doi: 10.1371/journal.pone.0202306
  33. Rekha PD, Hameed A, Manzoor MAP, et al. First report of pathogenic bacterium kalamiella piersonii isolated from urine of a kidney stone patient: draft genome and evidence for role in struvite crystallization. Pathogens. 2020;9(9):711. doi: 10.3390/pathogens9090711 EDN: CJBNYM
  34. Wasfi R, Hamed SM, Amer MA, et al. Proteus mirabilis biofilm: development and therapeutic strategies. Front Cell Infect Microbiol. 2020;10:414. doi: 10.3389/fcimb.2020.00414 EDN: XKXVJF
  35. Kaman A, Barua SK, Sharma A, et al. Study of differences in urine and stone microbiome and stone composition in patients with staghorn and non-staghorn renal calculi. J Clin Sci Res. 2025;14(3):171–175. doi: 10.4103/jcsr.jcsr_106_24 EDN: CDIRVN
  36. Saw JJ, Sivaguru M, Wilson EM, et al. In vivo entombment of bacteria and fungi during calcium oxalate, brushite, and struvite urolithiasis. Kidney360. 2021;2(2):298–311. doi: 10.34067/KID.0006942020 EDN: AANOQF
  37. Yuan T, Xia Y, Li B, et al. Gut microbiota in patients with kidney stones: a systematic review and meta-analysis. BMC Microbiol. 2023;23(1):143. doi: 10.1186/s12866-023-02891-0 EDN: EDOBTL
  38. Liu Y, Yang A, Zhang Z, et al. A microbiota-based perspective on urinary stone disease: insights from 16S rRNA sequencing and machine learning models. Front Cell Infect Microbiol. 2025;15:1623429. doi: 10.3389/fcimb.2025.1623429 EDN: IIJTZT
  39. Prywer J, Kozanecki M, Mielniczek-Brzóska E, et al. Solid phases precipitating in artificial urine in the absence and presence of bacteria proteus mirabilis–a contribution to the understanding of infectious urinary stone formation. Crystals (Basel). 2018;8(4):164. doi: 10.3390/cryst8040164 EDN: YGWNSP
  40. Zaidan N, Wang C, Chen Z, et al. Multiomics assessment of the gut Microbiome in rare hyperoxaluric conditions. Kidney Int Rep. 2024;9(6):1836–1848. doi: 10.1016/j.ekir.2024.03.040 EDN: OOPXSH
  41. Suryavanshi M, Franklin A, Fargue S, et al. Baseline abundance of oxalate-degrading bacteria determines response to Oxalobacter formigenes probiotic therapy. Gut Microbes. 2025;17(1): 2562337. doi: 10.1080/19490976.2025.2562337 EDN: NZSNNX
  42. Junier T, Palmieri F, Ubags ND, et al. Prevalence of oxalotrophy in the human microbiome. BMC Genomics. 2025;26(1):954. doi: 10.1186/s12864-025-12113-8 EDN: MICRSA
  43. De Bellis R, Piacentini MP, Meli MA, et al. In vitro effects on calcium oxalate crystallization kinetics and crystal morphology of an aqueous extract from Ceterach officinarum: Analysis of a potential antilithiatic mechanism. PLoS One. 2019;14(6): e0218734. doi: 10.1371/journal.pone.0218734 EDN: UZGDLA
  44. Yang X, Li H, Qumu D, et al. Taurine alleviates hyperuricemia-induced nephropathy in rats: insights from microbiome and metabolomics. Front Nutr. 2025;12:1587198. doi: 10.3389/fnut.2025.1587198 EDN: SWQOIE
  45. Lv Y, Yang X, Sun X, et al. Immune-microbiota dysregulation in maintenance hemodialysis: a 16S rRNA sequencing-based analysis of gut flora and T cell profiles. Ren Fail. 2025;47(1):2498630. doi: 10.1080/0886022X.2025.2498630 EDN: IOMMKG
  46. Jing J, Yan X, Wang L, et al. Gut microbiota-derived indole-3-acetic acid ameliorates calcium oxalate renal stone formation via AHR/NFκB axis. Urolithiasis. 2025;53(1):134. doi: 10.1007/s00240-025-01779-0 EDN: MZRVPU
  47. Zhao T, Zhang H, Yin X, et al. Tangshen formula modulates gut Microbiota and reduces gut-derived toxins in diabetic nephropathy rats. Biomed Pharmacother. 2020;129:110325. doi: 10.1016/j.biopha.2020.110325 EDN: WFSLEW
  48. Liu S, Gao Y, Luo J, et al. Dietary baking soda (NaHCO3) therapy recovered urolithiasis-induced kidney injury in mice by inhibition of oxidative stress, pyroptosis, and inflammation through gut-kidney axis. Ren Fail. 2025;47(1):2521456. doi: 10.1080/0886022X.2025.2521456
  49. Zhang B, Li T, Qiang Z, et al. Dysbiotic gut microbiota correlates with altered serum and urinary biomarkers in recurrent calcium oxalate stone patients. Int J Gen Med. 2025;18:6497–6506. doi: 10.2147/IJGM.S549804 EDN: EWUQKH
  50. Zhang L, Zhang TJ, Li Y, et al. Shenqi Yanshen Formula (SQYSF) protects against chronic kidney disease by modulating gut microbiota. Bioengineered. 2022;13(3):5625–5637. doi: 10.1080/21655979.2021.2023789 EDN: CBHVNH

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).