Потенциальные лабораторные маркеры винкристин-индуцированной периферической невропатии
- Авторы: Ковтун О.П.1, Базарный В.В.1, Корякина О.В.1
-
Учреждения:
- Уральский государственный медицинский университет
- Выпуск: Том 77, № 3 (2022)
- Страницы: 208-213
- Раздел: АКТУАЛЬНЫЕ ВОПРОСЫ НЕВРОЛОГИИ И НЕЙРОХИРУРГИИ
- URL: https://journal-vniispk.ru/vramn/article/view/125613
- DOI: https://doi.org/10.15690/vramn2007
- ID: 125613
Цитировать
Полный текст
Аннотация
Современная химиотерапия гемобластозов у детей нередко сопровождается медикаментозными осложнениями, в том числе винкристин-индуцированной периферической невропатией (vincristin-induced peripheral neuropathy, VIPN). Она встречается, как минимум, у 22–72% пациентов. Используемые в диагностике VIPN клинико-инструментальные тесты не дают возможности прогнозирования неврологических осложнений. Это делает актуальным поиск лабораторных биомаркеров повреждения нервной ткани при VIPN, что явилось предметом данного обзора. Источником первичной информации служили медицинские библиографические базы данных PubMed и Scopus, из которых по ключевым словам было отобрано 55 полнотекстовых статей, в том числе 4 систематических обзора, 14 научных обзоров, 37 оригинальных статей за 2017–2021 гг. Несмотря на отсутствие общепринятых высокоинформативных лабораторных методов оценки нейротоксичности, имеются данные о том, что поражение периферической нервной системы винкристином сопровождается изменением уровня в крови и ликворе маркеров аксонального повреждения — основного мозгового нейротрофического фактора (BDNF), легких цепей нейрофиламентов (NfL) и фактора роста нервов (NGF). Однако ни в одной из проанализированных работ не представлены критерии клинической ценности — чувствительность и специфичность этих показателей. Вместе с тем полученные данные об уровне плазменных хемокинов CХCL10 и CXCL12 позволяют с определенной уверенностью выявлять среди больных группу высокого риска по формированию периферической полиневропатии (диагностическая чувствительность — 79%, диагностическая специфичность — 78%). Следующей задачей становится поиск оптимального профиля этих цитокинов. Они вместе с аксональными маркерами могут стать инструментом для диагностических и профилактических методов нейротоксических осложнений, индуцированных химиотерапевтическими препаратами у детей.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Ольга Петровна Ковтун
Уральский государственный медицинский университет
Email: usma@usma.ru
ORCID iD: 0000-0002-5250-7351
SPIN-код: 9919-9048
д.м.н., профессор, академик РАН
Россия, ЕкатеринбургВладимир Викторович Базарный
Уральский государственный медицинский университет
Автор, ответственный за переписку.
Email: vlad-bazarny@yandex.ru
ORCID iD: 0000-0003-0966-9571
SPIN-код: 4813-8710
д.м.н., профессор
Россия, ЕкатеринбургОксана Валерьевна Корякина
Уральский государственный медицинский университет
Email: koryakina09@mail.ru
ORCID iD: 0000-0002-4595-1024
SPIN-код: 4880-6913
к.м.н., доцент
Россия, ЕкатеринбургСписок литературы
- Inaba H, Mullighan CG. Pediatric acute lymphoblastic leukemia. Haematologica. 2020;105(11):2524–2539. doi: https://doi.org/10.3324/haematol.2020.247031
- Baas PW, Rao AN, Matamoros AJ, et al. Stability properties of neuronal microtubules. Cytoskeleton (Hoboken). 2016;73(9):442–460. doi: https://doi.org/10.1002/cm.21286
- Starobova H, Vetter I. Pathophysiology of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci. 2017;10:174. doi: https://doi.org/10.3389/fnmol.2017.00174
- Lee BY, Hur EM. A role of microtubules in oligodendrocyte differentiation. Int J Mol Sci. 2020;21(3):1062. doi: https://doi.org/10.3390/ijms21031062
- Madsen ML, Due H, Ejskjær N, et al. Aspects of vincristine-induced neuropathy in hematologic malignancies: a systematic review. Cancer Chemother Pharmacol. 2019;84(3):471–485. doi: https://doi.org/10.1007/s00280-019-03884-5
- Cioroiu C, Weimer LH. Update on Chemotherapy-Induced Peripheral Neuropathy. Curr Neurol Neurosci Rep. 2017;17(6):47. doi: https://doi.org/10.1007/s11910-017-0757-7
- Zajączkowska R, Kocot-Kępska M, Leppert W, et al. Mechanisms of Chemotherapy-Induced Peripheral Neuropathy. Int J Mol Sci. 2019;20(6):1451. doi: https://doi.org/10.3390/ijms20061451
- van de Velde ME, Kaspers GL, Abbink FCH, et al. Vincristine-induced peripheral neuropathy in children with cancer: A systematic review. Crit Rev Oncol Hematol. 2017;114:114–130. doi: https://doi.org/10.1016/j.critrevonc.2017.04.004
- Nama N, Barker MK, Kwan C, et al. Vincristine-induced peripheral neurotoxicity: A prospective cohort. Pediatr Hematol Oncol. 2020;37(1):15–28. doi: https://doi.org/10.1080/08880018.2019.1677832
- Li GZ, Hu YH, Li DY, et al. Vincristine-induced peripheral neuropathy: A mini-review. Neurotoxicology. 2020;81:161–171. doi: https://doi.org/10.1016/j.neuro.2020.10.004
- Molassiotis A, Cheng HL, Lopez V, et al. Are we mis-estimating chemotherapy-induced peripheral neuropathy? Analysis of assessment methodologies from a prospective, multinational, longitudinal cohort study of patients receiving neurotoxic chemotherapy. BMC Cancer. 2019;19(1):132. doi: https://doi.org/10.1186/s12885-019-5302-4
- Tunjungsari DA, Gunawan PI, Ugrasena IDG. Risk factors vincristine-induced peripheral neuropathy in acute lymphoblastic leukemia in children. J Med Invest. 2021;68(3.4):232–237. doi: https://doi.org/10.2152/jmi.68.232
- Zečkanović A, Jazbec J, Kavčič M. Centrosomal protein72 rs924607 and vincristine-induced neuropathy in pediatric acute lymphocytic leukemia: meta-analysis. Future Sci OA. 2020;6(7):FSO582. doi: https://doi.org/10.2144/fsoa-2020-0044
- Wieske L, Smyth D, Lunn MP, et al. Fluid Biomarkers for Monitoring Structural Changes in Polyneuropathies: Their Use in Clinical Practice and Trials. Neurotherapeutics. 2021;18(4):2351–2367. doi: https://doi.org/10.1007/s13311-021-01136-0
- Capodivento G, De Michelis C, Carpo M, et al. CSF sphingomyelin: a new biomarker of demyelination in the diagnosis and management of CIDP and GBS. J Neurol Neurosurg Psychiatry. 2021;92(3):303–310. doi: https://doi.org/10.1136/jnnp-2020-324445
- Visigalli D, Capodivento G, Basit A, et al. Exploiting Sphingo- and Glycerophospholipid Impairment to Select Effective Drugs and Biomarkers for CMT1A. Front Neurol. 2020;11:903. doi: https://doi.org/10.3389/fneur.2020.00903
- Niezgoda A, Michalak S, Losy J, et al. sNCAM as a specific marker of peripheral demyelination. Immunol Lett. 2017;185:93–97. doi: https://doi.org/10.1016/j.imlet.2017.03.011
- Kim YH, Kim YH, Shin YK, et al. p75 and neural cell adhesion molecule 1 can identify pathologic Schwann cells in peripheral neuropathies. Ann Clin Transl Neurol. 2019;6(7):1292–1301. doi: https://doi.org/10.1002/acn3.50828
- Wang H, Davison M, Wang K, et al. Transmembrane protease serine 5: A novel Schwann cell plasma marker for CMT1A. Ann Clin Transl Neurol. 2020;7(1):69–82. doi: https://doi.org/10.1002/acn3.50965
- Santacruz CA, Vincent JL, Bader A, et al. Association of cerebrospinal fluid protein biomarkers with outcomes in patients with traumatic and non-traumatic acute brain injury: systematic review of the literature. Crit Care. 2021;25(1):278. doi: https://doi.org/10.1186/s13054-021-03698-z
- Wąsik N, Sokół B, Hołysz M, et al. Serum myelin basic protein as a marker of brain injury in aneurysmal subarachnoid haemorrhage. Acta Neurochir (Wien). 2020;162(3):545–552. doi: https://doi.org/10.1007/s00701-019-04185-9
- Krause K, Wulf M, Sommer P, et al. CSF Diagnostics: A Potentially Valuable Tool in Neurodegenerative and Inflammatory Disorders Involving Motor Neurons: A Review. Diagnostics (Basel). 2021;11(9):1522. doi: https://doi.org/10.3390/diagnostics11091522
- Khalil M, Teunissen CE, Otto M, et al. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol. 2018;14(10):577–589. doi: https://doi.org/10.1038/s41582-018-0058-z
- Körtvelyessy P, Kuhle J, Düzel E, et al. Ratio and index of Neurofilament light chain indicate its origin in Guillain-Barré Syndrome. Ann Clin Transl Neurol. 2020;7(11):2213–2220. doi: https://doi.org/10.1002/acn3.51207
- Yuan A, Nixon RA. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front Neurosci. 2021;15:689938. doi: https://doi.org/10.3389/fnins.2021.689938
- Ticau S, Sridharan GV, Tsour S, et al. Neurofilament Light Chain as a Biomarker of Hereditary Transthyretin-Mediated Amyloidosis. Neurology. 2021;96(3):e412–e422. doi: https://doi.org/10.1212/WNL.0000000000011090
- Kim SH, Choi MK, Park NY, et al. Serum neurofilament light chain levels as a biomarker of neuroaxonal injury and severity of oxaliplatin-induced peripheral neuropathy. Sci Rep. 2020;10(1):7995. doi: https://doi.org/10.1038/s41598-020-64511-5
- Louwsma J, Brunger AF, Bijzet J, et al. Neurofilament light chain, a biomarker for polyneuropathy in systemic amyloidosis. Amyloid. 2021;28(1):50–55. doi: https://doi.org/10.1080/13506129.2020.1815696
- Hayashi T, Nukui T, Piao J-L, et al. Serum neurofilament light chain in chronic inflammatory demyelinating polyneuropathy. Brain Behav. 2021;11(5):е02084. doi: https://doi.org/10.1002/brb3.2084
- Sun Q, Tang DD, Yin EG, et al. Diagnostic Significance of Serum Levels of Nerve Growth Factor and Brain Derived Neurotrophic Factor in Diabetic Peripheral Neuropathy. Med Sci Monit. 2018;24:5943–5950. doi: https://doi.org/10.12659/MSM.909449
- Youk J, Kim YS, Lim JA, et al. Depletion of nerve growth factor in chemotherapy-induced peripheral neuropathy associated with hematologic malignancies. PLoS One. 2017;12(8):e0183491. doi: https://doi.org/10.1371/journal.pone.0183491
- Azoulay D, Giryes S, Nasser R, et al. Prediction of Chemotherapy-Induced Peripheral Neuropathy in Patients with Lymphoma and Myeloma: the Roles of Brain-Derived Neurotropic Factor Protein Levels and A Gene Polymorphism. J Clin Neurol. 2019;15(4):511–516. doi: https://doi.org/10.3988/jcn.2019.15.4.511
- Szudy-Szczyrek A, Mlak R, Bury-Kamińska M, et al. Serum brain-derived neurotrophic factor (BDNF) concentration predicts polyneuropathy and overall survival in multiple myeloma patients. Br J Haematol. 2020;191(1):77–89. doi: https://doi.org/10.1111/bjh.16862
- Frithiof R, Rostami E, Kumlien E, et al. Critical illness polyneuropathy, myopathy and neuronal biomarkers in COVID-19 patients: A prospective study. Clin Neurophysiol. 2021;132(7):1733–1740. doi: https://doi.org/10.1016/j.clinph.2021.03.016
- Sun M, Liu N, Xie Q, et al. A candidate biomarker of glial fibrillary acidic protein in CSF and blood in differentiating multiple sclerosis and its subtypes: A systematic review and meta-analysis. Mult Scler Relat Disord. 2021;51:102870. doi: https://doi.org/10.1016/j.msard.2021.102870
- Danielson M, Wiklund A, Granath F, et al. Association between cerebrospinal fluid biomarkers of neuronal injury or amyloidosis and cognitive decline after major surgery. Br J Anaesth. 2021;126(2):467–476. doi: https://doi.org/10.1016/j.bja.2020.09.043
- Orsi G, Cseh T, Hayden Z, et al. Microstructural and functional brain abnormalities in multiple sclerosis predicted by osteopontin and neurofilament light. Mult Scler Relat Disord. 2021;51:102923. doi: https://doi.org/10.1016/j.msard.2021.102923
- Pizzamiglio C, Ripellino P, Prandi P, et al. Nerve conduction, circulating osteopontin and taxane-induced neuropathy in breast cancer patients. Neurophysiol Clin. 2020;50(1):47–54. doi: https://doi.org/10.1016/j.neucli.2019.12.001
- Sandelius Å, Blennow K, Zetterberg H, et al. Neurofilament light chain as disease biomarker in a rodent model of chemotherapy induced peripheral neuropathy. Exp Neurol. 2018;307:129–132. doi: https://doi.org/10.1016/j.expneurol.2018.06.005
- Velasco R, Navarro X, Gil-Gil M, et al. Neuropathic Pain and Nerve Growth Factor in Chemotherapy-Induced Peripheral Neuropathy: Prospective Clinical-Pathological Study. J Pain Symptom Manage. 2017;54(6):815–825. doi: https://doi.org/10.1016/j.jpainsymman.2017.04.021
- Verma P, Devaraj J, Skiles JL, et al. A Metabolomics Approach for Early Prediction of Vincristine-Induced Peripheral Neuropathy. Sci Rep. 2020;10(1):9659. doi: https://doi.org/10.1038/s41598-020-66815-y
- Dewan P, Chaudhary P, Gomber S, et al. Oxidative Stress in Cerebrospinal Fluid During Treatment in Childhood Acute Lymphoblastic Leukemia. Cureus. 2021;13(6):e15997. doi: https://doi.org/10.7759/cureus.15997
- Hong Z, Wei Z, Xie T, et al. Targeting chemokines for acute lymphoblastic leukemia therapy. J Hematol Oncol. 2021;14(1):48. doi: https://doi.org/10.1186/s13045-021-01060-y
- Lees J.G., Makker P.G.S., Tonkin R.S, et al. Immune-mediated processes implicated in chemotherapy-induced peripheral neuropathy. Eur J Cancer. 2017;73:22–29. doi: https://doi.org/10.1016/j.ejca.2016.12.006
- Starobova H, Monteleone M, Adolphe C, et al. Vincristine-induced peripheral neuropathy is driven by canonical NLRP3 activation and IL-1β release. J Exp Med. 2021;218(5):e20201452. doi: https://doi.org/10.1084/jem.20201452
- Zhou L, Ao L, Yan Y, et al. The Therapeutic Potential of Chemokines in the Treatment of Chemotherapy-Induced Peripheral Neuropathy. Curr Drug Targets. 2020;21(3):288–301. doi: https://doi.org/10.2174/138945012066619090615365
- Singh G, Singh A, Singh P, et al. Vincristine-Induced Peripheral Neuropathy by Inhibition of Inflammatory Cytokines and NFκB Signaling. ACS Chem Neurosci. 2019;10(6):3008–3017. doi: https://doi.org/10.1021/acschemneuro.9b00206
- Gao Y, Tang Y, Zhang H, et al. Vincristine leads to colonic myenteric neurons injury via pro-inflammatory macrophages activation. Biochem Pharmacol. 2021;186:114479. doi: https://doi.org/10.1016/j.bcp.2021
- Triarico S, Romano A, Attinà G, et al. Vincristine-Induced Peripheral Neuropathy (VIPN) in Pediatric Tumors: Mechanisms, Risk Factors, Strategies of Prevention and Treatment. Int J Mol Sci. 2021;22(8):4112. doi: https://doi.org/10.3390/ijms22084112
- Fumagalli G, Monza L, Cavaletti G, et al. Neuroinflammatory Process Involved in Different Preclinical Models of Chemotherapy-Induced Peripheral Neuropathy. Front Immunol. 2021;11:626687. doi: https://doi.org/10.3389/fimmu.2020.626687
- Klein I, Lehmann HC. Pathomechanisms of Paclitaxel-Induced Peripheral Neuropathy. Toxics. 2021;9(10):229. doi: https://doi.org/10.3390/toxics9100229
- Koryakina O., Bazarnyi V., Fechina L, et al. Features of the chemokine profile of blood plasma by neurotoxic complications of acute lymphoblastic leukemia in children: preliminary report. International Conference “Longevity Interventions 2020” BIO Web Conf. Volume 22, 2020. doi: https://doi.org/10.1051/bioconf/20202202003
- Базарный В.В., Ковтун О.П., Корякина О.В., и др. Исследование цитокинового профиля ликвора при нейротоксических осложнениях химиотерапии острого лимфобластного лейкоза у детей // Биомедицинская химия. — 2021. — Т. 67. — Вып. 4. — С. 374–377. [Bazarnyi VV, Kovtun OP, Koryakina OV, et al. A study of cytokine profile in cerebrospinal fluid of children with acute lymphocytic leukemia and neurotoxic side effects of chemotherapy. Biomeditsinskaya Khimiya. 2021;67(4):374–377. doi: https://doi.org/10.18097/PBMC20216704374
- Yang QY, Hu YH, Guo HL, et al. Vincristine-Induced Peripheral Neuropathy in Childhood Acute Lymphoblastic Leukemia: Genetic Variation as a Potential Risk Factor. Front Pharmacol. 2021;12:771487. doi: https://doi.org/10.3389/fphar.2021.771487
- Cheung YT, Khan RB, Liu W, et al. Association of Cerebrospinal Fluid Biomarkers of Central Nervous System Injury With Neurocognitive and Brain Imaging Outcomes in Children Receiving Chemotherapy for Acute Lymphoblastic Leukemia. JAMA Oncol. 2018;4(7):e180089. doi: https://doi.org/10.1001/jamaoncol
Дополнительные файлы
