Роль липидов в механизмах сигнализации толл-подобных рецепторов
- Авторы: Кытикова О.Ю.1, Новгородцева Т.П.1, Денисенко Ю.К.1, Антонюк М.В.1, Гвозденко Т.А.1
-
Учреждения:
- Дальневосточный научный центр физиологии и патологии дыхания
- Выпуск: Том 75, № 6 (2020)
- Страницы: 585-593
- Раздел: АКТУАЛЬНЫЕ ВОПРОСЫ ИММУНОЛОГИИ
- URL: https://journal-vniispk.ru/vramn/article/view/125672
- DOI: https://doi.org/10.15690/vramn1179
- ID: 125672
Цитировать
Полный текст
Аннотация
Толл-подобные рецепторы (TLRs) являются важными участниками врожденных и адаптивных иммунных реакций, вовлеченных в инициацию воспалительного процесса в ответ на стимулирующее влияние эндогенных (аллармины) и экзогенных (патогены вирусов, бактерий, грибов) лигандов. В настоящее время стало очевидным, что не только вирусные и бактериальные инфекции, но и неинфекционные воспалительные заболевания сопровождаются активацией систем воспалительного ответа и развитием хронического воспаления, связанного с нарушениями в регуляции системы TLRs. В связи с этим активно изучается лиганд-независимая активация TLRs, которая происходит с участием липидов. Свои сигнальные функции TLRs реализуют в уникальных микродоменах цитоплазматической мембраны — липидных рафтах, координирующих множество клеточных процессов. Способность к активации TLRs обнаружена для насыщенных жирных кислот (SFAs), как экзогенных, так и эндогенных. С другой стороны, TLRs могут быть ингибированы омега-3-полиненасыщенными жирными кислотами (PUFAs), что способствует блокированию воспалительного процесса. В результате активации TLRs запускается сигнальный каскад, который индуцирует производство активных форм кислорода и азота. Развитие оксидативного стресса сопровождается образованием окисленных форм фосфолипидов (Ox-PLs), которые также индуцируют развитие хронического воспаления. В то же время для Ox-PLs характерна не только провоспалительная, но и противовоспалительная активность, что обусловливает необходимость проведения глубоких исследований их роли в реализации данных процессов. В представленной обзорной статье рассматриваются и обсуждаются механизмы, с помощью которых SFAs, PUFAs и Ox-PLs модулируют активацию TLRs в липидных рафтах. Проведение научных исследований по детализации этих механизмов будет способствовать разработке стратегии снижения риска хронических заболеваний, которые вызваны воспалительными реакциями, опосредованными TLRs.
Полный текст
Открыть статью на сайте журналаОб авторах
О. Ю. Кытикова
Дальневосточный научный центр физиологии и патологии дыхания
Автор, ответственный за переписку.
Email: kytikova@yandex.ru
ORCID iD: 0000-0001-5018-0271
SPIN-код: 3006-5614
д.м.н.
Россия, ВладивостокТ. П. Новгородцева
Дальневосточный научный центр физиологии и патологии дыхания
Email: nauka@niivl.ru
ORCID iD: 0000-0002-6058-201X
SPIN-код: 5888-6099
д.б.н., профессор
Россия, ВладивостокЮ. К. Денисенко
Дальневосточный научный центр физиологии и патологии дыхания
Email: karaman@inbox.ru
ORCID iD: 0000-0003-4130-8899
SPIN-код: 4997-3432
д.б.н.
Россия, ВладивостокМ. В. Антонюк
Дальневосточный научный центр физиологии и патологии дыхания
Email: antonyukm@mail.ru
ORCID iD: 0000-0002-2492-3198
SPIN-код: 3446-4852
д.м.н., профессор
Россия, ВладивостокТ. А. Гвозденко
Дальневосточный научный центр физиологии и патологии дыхания
Email: vfdnz@mail.ru
ORCID iD: 0000-0002-6413-9840
SPIN-код: 7869-1692
д.м.н., профессор
Россия, ВладивостокСписок литературы
- Hagar JA, Powell DA, Aachoui Y, et al. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science. 2013;341:1250–1253. doi: https://doi.org/10.1126/science.1240988
- Zakeri A, Russo M. Dual Role of Toll-like Receptors in Human and Experimental Asthma Models. Front Immunol. 2018;9:1027. doi: https://doi.org/10.3389/fimmu.2018.01027
- Sallustio F, Curci C, Stasi A, et al. Role of Toll-Like Receptors in Actuating Stem/Progenitor Cell Repair Mechanisms: Different Functions in Different Cells. Stem Cells Int. 2019:6795845. doi: https://doi.org/10.1155/2019/6795845
- Kumar V. Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol. 2019;332:16–30. doi: https://doi.org/10.1016/j.jneuroim.2019.03.012
- Schaefer L. Complexity of danger: the diverse nature of damage-associated molecular patterns. J Biol Chem. 2014;289(51):35237–35245. doi: https://doi.org/10.1074/jbc.R114.619304
- De Nardo D. Toll-like receptors: activation, signalling and transcriptional modulation. Cytokine. 2015;74:181–189. doi: https://doi.org/10.1016/j.cyto.2015.02.025
- Scior T, Alexander C, Zaehringer U. Reviewing and identifying amino acids of human, murine, canine and equine TLR4/MD-2 Receptor complexes conferring endotoxic Innate Immunity Activation by LPS/Lipid A, or antagonistic Effects by Eritoran, in Contrast to Species-Dependent modulation by Lipid IVa. Comput Struct Biotechnol J. 2013;5:e201302012. doi: https://doi.org/10.5936/csbj.201302012
- Hwang DH, Kim JA, Lee JY. Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid. Еur J Pharmacol. 2016;785:24–35. doi: https://doi.org/10.1016/j.ejphar.2016.04.024
- Mirotti L, Alberca Custodio RW, Gomes E, et al. CpG-ODN shapes alum adjuvant activity signaling via MyD88 and IL-10. Front Immunol. 2017;8:47. doi: https://doi.org/10.3389/fimmu.2017.00047
- Сhristou EAA, Giardino G, Stefanaki E, Ladomenou F. Asthma: An Undermined State of Immunodeficiency. Int Rev Immunol. 2019;38(2):70–78. doi: https://doi.org/10.1080/08830185.2019.1588267
- Glass CK, Olefsky JM. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 2012;15(5):635–645. doi: https://doi.org/10.1016/j.cmet.2012.04.001
- Gong T, Yang Y, Jin T, et al. Orchestration of NLRP3 inflammasome activation by ion fluxes. Trends Immunol. 2018;39(5):393–406. doi: https://doi.org/10.1016/j.it.2018.01.009
- Frazao JB, Errante PR, Condino-Neto A. Toll-like receptors’ pathway disturbances are associated with increased susceptibility to infections in humans. Archivum Immunologiae et Therapiae Experimentalis. 2013;61(6):427–443. doi: https://doi.org/10.1007/s00005-013-0243-0
- Bruchard M, Rebé C, Derangère V, et al. The receptor NLRP3 is a transcriptional regulator of TH2 differentiation. Nat Immunol. 2015;16(8):859–870. doi: https://doi.org/10.1038/ni.3202
- Koppenol-Raab M, Sjoelund V, Manes NP, et al. Proteome and secretome analysis reveals differential post-transcriptional regulation of Toll-like receptor responses. Mol Cell Proteomics. 2017;16(4 Suppl 1):S172–S186. doi: https://doi.org/10.1074/mcp.M116.064261
- Kleveta G, Borzęcka K, Zdioruk M, et al. LPS induces phosphorylation of actin-regulatory proteins leading to actin reassembly and macrophage motility. J Cell Biochem. 2012;113(1):80–92. doi: https://doi.org/10.1002/jcb.23330
- Plociennikowska A, Hromada‐Judycka A, Borzecka K, et al. Co‐operation of TLR4 and raft proteins in LPS‐induced pro‐inflammatory signaling. Cell Mol Life Sci. 2015;72(3):557–581. doi: https://doi.org/10.1007/s00018-014-1762-5
- Schoeniger A, Fuhrmann H, Schumann J. LPS- or Pseudomonas aeruginosa-mediated activation of the macrophage TLR4 signaling cascade depends on membrane lipid composition. Peer J. 2016;4:e1663. doi: https://doi.org/10.7717/peerj.1663
- Engin AB. Adipocyte-Macrophage Cross-Talk in Obesity. Adv Exp Med Biol. 2017;960:327–343. doi: https://doi.org/10.1007/978-3-319-48382-5_14
- Arleevskaya MI, Larionova RV, Brooks WH, et al. Toll-Like Receptors, Infections, and Rheumatoid Arthritis. Clin Rev Allergy Immunol. 2020;58(2):172–181. doi: https://doi.org/10.1007/s12016-019-08742-z
- Varshney P, Yadav V, Saini N. Lipid rafts in immune signalling: current progress and future perspective. Immunology. 2016;149(1):13–24. doi: https://doi.org/10.1111/imm.12617
- Ruysschaert JM, Lonez C. Role of lipid microdomains in TLR-mediated signalling. Biochim. Biophys. Acta. 2015;1848(9):1860–1867. doi: https://doi.org/10.1016/j.bbamem.2015.03.014
- Huang S, Rutkowsky JM, Snodgrass RG, et al. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J Lipid Res. 2012;53(9):2002–2013. doi: https://doi.org/10.1194/jlr.D029546
- Li Y, Deng SL, Lian ZX, et al. Roles of Toll-Like Receptors in Nitroxidative Stress in Mammals. Cells. 2019;8(6):pii:E576. doi: https://doi.org/10.3390/cells8060576
- Hellwing C, Tigistu-Sahle F, Fuhrmann H, et al. Lipid composition of membrane microdomains isolated detergent-free from PUFA supplemented RAW264.7 macrophages. Journal of Cellular Physiology. 2018;233(3):2602–2612. doi: https://doi.org/10.1002/jcp.26138
- Кытикова О.Ю., Антонюк М.В., Гвозденко Т.А., Новгородцева Т.П. Метаболические аспекты взаимосвязи ожирения и бронхиальной астмы // Ожирение и метаболизм. — 2018. — Т. 15. — № 4. — С. 9–14. [Kytikova OJu, Antonjuk MV, Gvozdenko TA, Novgorodceva TP. Metabolic aspects of the relationship of asthma and obesity. Ozhirenie i Metabolizm. 2018;15(4):9–14. (In Russ.)] doi: https://doi.org/10.14341/OMET9578
- Kytikova O, Novgorodtseva T, Antonyuk M, et al. Pro-resolving lipid mediators in the pathophysiology of asthma. Medicina. 2019;55(6):284. doi: https://doi.org/10.3390/medicina55060284
- Novgorodtseva TP, Gvozdenko TA, Vitkina TI, et al. Regulatory signal mechanisms of systemic inflammation in respiratory pathology. Russian Open Medical Journal. 2019;8(1):e0106. doi: https://doi.org/10.15275/rusomj.2019.0106
- Novgorodtseva TP, Denisenko YK, Zhukova NV, et al. Modification of the fatty acid composition of the erythrocyte membrane in patients with chronic respiratory diseases. Lipids in Health and Disease. 2013;12:117. doi: https://doi.org/10.1186/1476-511X-12-117
- Lydic TA, Goo Y-H. Lipidomics unveils the complexity of the lipidome in metabolic diseases. Clin Transl Med. 2018;7:4. doi: https://doi.org/10.1186/s40169-018-0182-9
- Diaz-Rohrer BB, Levental KR, Simons K, et al. Membrane raft association is a determinant of plasma membrane localization. Proc Natl Acad Sci USA. 2014;111:8500–8505. doi: https://doi.org/10.1073/pnas.1404582111
- Farnoud AM, Toledo AM, Konopka JB, et al. Raft-Like Membrane Domains in Pathogenic Microorganisms. Сurr Top Membr. 2015;75:233–268. doi: https://doi.org/10.1016/bs.ctm.2015.03.005
- Goñi FM. “Rafts”: A nickname for putative transient nanodomains. Chem Phys Lipids. 2019;218:34–39. doi: https://doi.org/10.1016/j.chemphyslip.2018.11.006
- Georgieva R, Chachaty C, Staneva G. Docosahexaenoic acid promotes micron scale liquid-ordered domains. A comparison study of docosahexaenoic versus oleic acid containing phosphatidylcholine in raft-like mixtures. Biochim. Biophys. Acta. 2015;1848:1424–1435. doi: https://doi.org/10.1016/j.bbamem.2015.02.027
- Tulodziecka K, Diaz-Rohrer BB, Farley MM, et al. Remodeling of the postsynaptic plasma membrane during neural development. Mol Biol Cell. 2016;27:3480–3489. doi: https://doi.org/10.1091/mbc.E16-06-0420
- Lorent JH, Diaz-Rohrer B, Lin X, et al. Structural determinants and functional consequences of protein affinity for membrane rafts. Nat. Commun. 2017;8:1219. doi: https://doi.org/10.1038/s41467-017-01328-3
- Sezgin E, Levental I, Mayor S, et al. The mystery of membrane organization: composition, regulation and physiological relevance of lipid rafts. Rev Mol Cell Biol. 2017;18(6):361–374. doi: https://doi.org/10.1038/nrm.2017.16
- Lee I-H, Imanaka MY, Modahl EH, Lipid AP. Raft Phase Modulation by Membrane-Anchored Proteins with Inherent Phase Separation Properties. Torres-Ocampo. ACS Omega. 2019;4(4):6551–6559. doi: https://doi.org/10.1021/acsomega.9b00327
- Kinoshita M. Raft-based sphingomyelin interactions revealed by new fluorescent sphingomyelin analogs. J Cell Biol. 2017;216:1183–1204. doi: https://doi.org/10.1083/jcb.201607086
- Hou TY, Barhoumi R, Fan Y-Y, Rivera GM, et al. n-3 polyunsaturated fatty acids suppress CD4(+) T cell proliferation by altering phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P-2] organization. Biochim Biophys Acta. 2016;1858(1):85–96. doi: https://doi.org/10.1016/j.bbamem.2015.10.009
- Sciacca MFM, Lolicato F, Di Mauro G, et al. The role of cholesterol in driving iapp-membrane interactions. Biophys J. 2016;111(1):140–151. doi: https://doi.org/10.1016/j.bpj.2016.05.050
- Biwer L, Isakson BE. Endoplasmic reticulum mediated signaling in cellular microdomains. Acta Physiol (Oxf). 2017;219(1):162–175. doi: https://doi.org/10.1111/apha.12675
- Bian X, Saheki Y, De Camilli P. Ca2+ releases E-Syt1 autoinhibition to couple ER-plasma membrane tethering with lipid transport. EMBO J. 2018;37(2):219–234. doi: https://doi.org/10.15252/embj.201797359
- Suzuki M. High-density lipoprotein suppresses the type I interferon response, a family of potent antiviral immunoregulators, in macrophages challenged with lipopolysaccharide. Circulation. 2010;122(19):1919–1927. doi: https://doi.org/10.1161/CIRCULATIONAHA.110.961193
- Zhu X. Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J Lipid Res. 2010;51(11):3196–3206. doi: https://doi.org/10.1194/jlr.M006486
- Yvan-Charvet L. ABCA1 and ABCG1 protect against oxidative stress-induced macrophage apoptosis during efferocytosis. Circ Res. 2010;106(12):1861–1869. doi: https://doi.org/10.1161/CIRCRESAHA.110.217281
- Carroll RG, Zaslona Z, Galván-Peña S, et al. An unexpected link between fatty acid synthase and cholesterol synthesis in proinflammatory macrophage activation. J Biol Chem. 2018;293(15):5509–5521. doi: https://doi.org/10.1074/jbc.RA118.001921
- Pinot M, Vanni S, Barelli H. Lipid cell biology. Polyunsaturated phospholipids facilitate membrane deformation and fission by endocytic proteins. Science. 2014;345:693–697. doi: https://doi.org/10.1126/science.1255288
- Frisz JF, Klitzing HA, Lou K, et al. Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol. J Biol Chem. 2013;288(23):16855–16861. doi: https://doi.org/10.1074/jbc.M113.473207
- Casares D, Escribá PV, Rosselló CA. Membrane Lipid Composition: Effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenues. Int J Mol Sci. 2019;20(9):2167. doi: https://doi.org/10.3390/ijms20092167
- Harayama T, Riezman H. Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol. 2018;19:281–296. doi: https://doi.org/10.1038/nrm.2017.138
- Kiefer K, Casas J, García-López R, Vicente R. Ceramide Imbalance and Impaired TLR4-Mediated Autophagy in BMDM of an ORMDL3-Overexpressing Mouse Model. Int J Mol Sci. 2019;20(6):1391. doi: https://doi.org/10.3390/ijms20061391
- Levental KR. Polyunsaturated lipids regulate membrane domain stability by tuning membrane order. Biophys J. 2016;110(8):1800–1810. doi: https://doi.org/10.1016/j.bpj.2016.03.012
- Shaikh SR, Kinnun JJ, Wassall SR. How polyunsaturated fatty acids modify molecular organization in membranes: insight from NMR studies of model systems. Biochim. Biophys. Acta. 2015;1848(1Pt.B):211–219. doi: https://doi.org/10.1016/j.bbamem.2014.04.020
- Prajapati B, Jena PK, Rajput P, et al. Understanding and modulating the Toll like Receptors (TLRs) and NOD like Receptors (NLRs) cross talk in type 2 diabetes. Curr Diabetes Rev. 2014;10(3):190–200. doi: https://doi.org/10.2174/1573399810666140515112609
- Rocha DM, Caldas AP, Oliveira LL, et al. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis. 2016;244:211–215. doi: https://doi.org/10.1016/j.atherosclerosis.2015.11.015
- Snodgrass RG, Huang S, Choi IW, et al. Inflammasome-mediated secretion of IL-1beta in human monocytes through TLR2 activation; modulation by dietary fatty acids. J Immunol. 2013;191:4337–4347. doi: https://doi.org/10.4049/jimmunol.1300298
- Kang JY, Lee JO. Structural biology of the Toll-like receptor family. Annu Rev Biochem. 2011;80:917–941. doi: https://doi.org/10.1146/annurev-biochem-052909-141507
- Wong SW, Kwon MJ, Choi AM, et al. Fatty acids modulate Toll‐like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species‐dependent manner. J Biol Chem. 2009;284:27384–27392. doi: https://doi.org/10.1074/jbc.M109.044065
- Kytikova OY, Novgorodtseva TP, Antonyuk MV, et al. Molecular targets of fatty acid ethanolamides in asthma. Medicina (Kaunas). 2019;55(4):87. doi: https://doi.org/10.3390/medicina55040087
- Wu M-Y, Li Ch-J, Hou M-F, et al. New Insights into the Role of Inflammation in the Pathogenesis of Atherosclerosis. Int J Mol Sci. 2017;18(10):2034–2040. doi: https://doi.org/10.3390/ijms18102034
- McCormick SPA, Schneider WJ. Lipoprotein(a) catabolism: a case of multiple receptors. Pathology. 2019;51(2):155–164. doi: https://doi.org/10.1016/j.pathol.2018.11.003
- Dana N, Vaseghi G, Haghjooy Javanmard S. Crosstalk between Peroxisome Proliferator-Activated Receptors and Toll-Like Receptors: A Systematic Review. Adv Pharm Bull. 2019;9(1):12–21. doi: https://doi.org/10.15171/apb.2019.003
- Walton KA, Cole AL, Yeh M, et al. Specific phospholipid oxidation products inhibit ligand activation of toll-like receptors 4 and 2. Arterioscler Thromb Vasc Biol. 2003;23:1197–1203. doi: https://doi.org/10.1161/01.ATV.0000079340.80744.B8
- Voelker DR, Numata M. Phospholipid regulation of innate immunity and respiratory viral infection. J Biol Chem. 2019;294(12):4282–4289. doi: https://doi.org/10.1074/jbc.AW118.003229
- Kandasamy P, Numata M, Zemski Berry K, et al. Structural analogs of pulmonary surfactant phosphatidylglycerol inhibit Toll-like receptor 2 and 4 signaling. J. Lipid Res. 2016;57:993–1005. doi: https://doi.org/10.1194/jlr.M065201
- Bretscher P, Egger J, Shamshiev A, et al. Phospholipid oxidation generates potent anti-inflammatory lipid mediators that mimic structurally related pro-resolving eicosanoids by activating Nrf2. EMBO Mol Med. 2015;7:593–607. doi: https://doi.org/10.15252/emmm.201404702
- Azzam KM, Fessler MB. Crosstalk between reverse cholesterol transport and innate immunity. Trends Endocrinol Metab. 2012;23:169–178. doi: https://doi.org/10.1016/j.tem.2012.02.001
- Erridge C, Kennedy S, Spickett CM, et al. Oxidized phospholipid inhibition of toll-like receptor (TLR) signaling is restricted to TLR2 and TLR4: roles for CD14, LPS-binding protein, and MD2 as targets for specificity of inhibition. J Biol Chem. 2008;283:24748–24759. doi: https://doi.org/10.1074/jbc.M800352200
- Никонова А.А., Хаитов М.Р., Хаитов Р.М. Перспективы использования агонистов и антагонистов Toll-подобных рецепторов для профилактики и лечения вирусных инфекций // Медицинская иммунология. — 2019. — Т. 21.— № 3. — С. 937–406. [Nikonova AA, Khaitov MR, Khaitov RM. Perspektivy ispol’zovaniya agonistov i antagonistov dorozhnyye-podobnykh retseptorov dlya profilaktiki i lecheniya virusnykh infektsiy. Meditsinskaya Immunologiya. 2019;21(3):937–406. (In Russ.)] doi: https://doi.org/doi.org/10.15789/1563-0625-2019-3-397-40626
- Dowling JK, Mansell A. Toll-like receptors: the swiss army knife of immunity and vaccine development. Clin. Transl. Immunology. 2016;5(5):e85. doi: https://doi.org/10.1038/cti.2016.22
Дополнительные файлы
