C-fos, ERK1/2, MAP2, NOTCH1 Proteins Expression Patterns in Human Cerebral Cortex Neurons after Ischemic Stroke
- Authors: Sergeeva S.P.1, Lyundup A.V.1, Beregovykh V.V.1, Litvitskiy P.F.1, Savin A.A.2, Gorbacheva L.R.3, Kiseleva E.V.4, Breslavich I.D.3, Kutsenko K.I.5,6, Shishkina L.V.7
- 
							Affiliations: 
							- I.M. Sechenov First Moscow State Medical University (Sechenov University)
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
- Lomonosov Moscow State University
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences
- Bureau of Forensic Medicine of Moscow Healthcare Department
- International Legal Institute
- N.N. Burdenko Scientific Research Neurosurgery
 
- Issue: Vol 75, No 3 (2020)
- Pages: 226-233
- Section: NEUROLOGY AND NEUROSURGERY: CURRENT ISSUES
- URL: https://journal-vniispk.ru/vramn/article/view/125693
- DOI: https://doi.org/10.15690/vramn1295
- ID: 125693
Cite item
Full Text
Abstract
Background. The search for protein (these include c-fos, ERK1/2, MAP2, NOTCH1) expression that provide neuroplasticity mechanisms of the cerebral cortex after ischemic stroke (IS) patterns is an urgent task.
Aims — to reveal c-fos, ERK1/2, MAP2, NOTCH1 proteins expression patterns in human cerebral cortex neurons after IS.
Materials and methods. We studied 9 left middle cerebral artery (LMCA) IS patients cerebral cortex samples from 3 zones: 1 — the zone adjacent to the necrotic tissue focus; 2 — zone remote from the previous one by 4–7 cm; 3 — zone of the contralateral hemisphere, symmetric to the IS focus. Control samples were obtained from 3 accident died people. Identification of targeted proteins NSE, c-fos, ERK1/2, MAP2, NOTCH1 was performed by indirect immunoperoxidase immunohistochemical method.
Results. Moving away from the ischemic focus, there is an increase in the density of neurons and a decrease in the damaged neurons proportion, the largest share of c-fos protein positive neurons in zone 2, NOTCH1 positive neurons in zone 1, smaller fractions of ERK1/2 and MAP2 positive neurons compared to the control only in samples of zone 1.
Conclusions. With the IS development, the contralateral hemisphere is intact tissue increased activation zone, while the zones 1 and 2 have pathological activation signs. In zone 1 of the range, the adaptive response of the tissue decreases, and in zone 2 it expands. Therefore, a key target for therapeutic intervention is zone 2.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Svetlana P. Sergeeva
I.M. Sechenov First Moscow State Medical University (Sechenov University)
							Author for correspondence.
							Email: svetlanapalna@mail.ru
				                	ORCID iD: 0000-0002-0083-1213
				                	SPIN-code: 4257-9498
																		                								
MD, PhD
Russian Federation, 8, bld. 2, Trubetskaya str., 119991, MoscowAleksey V. Lyundup
I.M. Sechenov First Moscow State Medical University (Sechenov University)
														Email: lyundup@gmail.com
				                	ORCID iD: 0000-0002-0102-5491
				                	SPIN-code: 4954-3004
																		                								
MD, PhD
Russian Federation, MoscowValery V. Beregovykh
I.M. Sechenov First Moscow State Medical University (Sechenov University)
														Email: beregovykh@ramn.ru
				                	ORCID iD: 0000-0002-0210-4570
				                	SPIN-code: 5940-7554
																		                								
MD, PhD, Professor, Aсademiсian of the RAS
Russian Federation, MoscowPetr F. Litvitskiy
I.M. Sechenov First Moscow State Medical University (Sechenov University)
														Email: litvicki@mma.ru
				                	ORCID iD: 0000-0003-0151-9114
				                	SPIN-code: 6657-5937
																		                								
MD, PhD, Professor, Corresponding Member of the RAS
Russian Federation, MoscowAleksey A. Savin
A.I. Yevdokimov Moscow State University of Medicine and Dentistry
														Email: lasavin@mail.ru
				                	ORCID iD: 0000-0002-6340-8623
				                	SPIN-code: 9162-6720
																		                								
MD, PhD, Professor
Russian Federation, MoscowLiubov R. Gorbacheva
Lomonosov Moscow State University
														Email: gorbacheva@mail.bio.msu.ru
				                	ORCID iD: 0000-0002-3910-8831
				                	SPIN-code: 4394-0575
																		                								
PhD, Professor
Russian Federation, MoscowEkaterina V. Kiseleva
Koltzov Institute of Developmental Biology of Russian Academy of Sciences
														Email: evkiseleva@mail.ru
				                	ORCID iD: 0000-0002-2270-6595
				                	SPIN-code: 7421-8496
																		                								
PhD
Russian Federation, MoscowIlya D. Breslavich
Lomonosov Moscow State University
														Email: br_i@inbox.ru
				                	ORCID iD: 0000-0002-9321-9102
				                	SPIN-code: 9615-9237
																		                								
ассистент
Russian Federation, MoscowKirill I. Kutsenko
Bureau of Forensic Medicine of Moscow Healthcare Department; International Legal Institute
														Email: ceamler@gmail.com
				                	ORCID iD: 0000-0001-9299-5153
				                	SPIN-code: 8964-3717
																		                								
MD, PhD
Russian Federation, MoscowLyudmila V. Shishkina
N.N. Burdenko Scientific Research Neurosurgery
														Email: lshishkina@nsi.ru
				                	ORCID iD: 0000-0001-7045-7223
				                	SPIN-code: 6341-2050
																		                								
MD, PhD
Russian Federation, MoscowReferences
- Pool EM, Leimbach M, Binder E, et al. Network dynamics engaged in the modulation of motor behavior in stroke patients. Human brain mapping. 2018;39(3):1078–1092. doi: 10.1002/hbm.23872.
- Kim DH, Lee HE, Kwon KJ, et al. Early immature neuronal death initiates cerebral ischemia-induced neurogenesis in the dentate gyrus. Neuroscience. 2015;284:42–54. doi: 10.1016/j.neuroscience.2014.09.074.
- Schuldiner O, Yaron A. Mechanisms of developmental neurite pruning. Cellular and Molecular Life Sciences. 2015;72(1):101–119. doi: 10.1007/s00018-014-1729-6.
- Maor-Nof M, Yaron A. Neurite pruning and neuronal cell death: spatial regulation of shared destruction programs. Current opinion in neurobiology. 2013;23(6):990–996. doi: 10.1016/j.conb.2013.06.007.
- Шерстнев В.В., Юрасов В.В., Сторожева З.И., и др. Нейрогенез и апоптоз в зрелом мозге при формировании и упрочении долговременной памяти // Нейрохимия. — 2010. — Т. 27. — № 2. — С. 130–137. [Sherstnev VV, Yurasov VV, Storozheva ZI, et al. Neurogenesis and apoptosis in the mature brain during formation and consolidation of long-term memory. Neurochemical Journal. 2010;4(2):109–115. (In Russ.)]
- Авдеев Д.Б., Акулинин В.А., Степанов А.С., и др. Плейотропные ферменты апоптоза и синаптическая пластичность гиппокампа белых крыс после окклюзии общих сонных артерий // Сибирский медицинский журнал. — 2018. — Т. 33. — № 3. — С. 102–110. doi: 10.29001/2073-8552-2018-33-3-102-110. [Avdeev DV, Akulinin VA, Stepanov AS, et al. Pleiotropic enzymes of apoptosis and synaptic plasticity in albino rat hippocampus after occlusion of common carotid arteries. The Siberian Medical Journal. 2018;33(3):102–110. (In Russ.)]
- Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev. 2004;68:320–344. doi: 10.1128/mmbr.68.2.320-344.2004.
- Pernet V, Hauswirth WW, Di Polo A. Extracellular signal-regulated kinase 1/2 mediates survival, but not axon regeneration, of adult injured central nervous system neurons in vivo. Journal of neurochemistry. 2005;93(1):72–83. doi: 10.1111/j.1471-4159.2005.03002.x.
- Kim SY, Han YM, Oh M, et al. DUSP4 regulates neuronal differentiation and calcium homeostasis by modulating ERK1/2 phosphorylation. Stem Cells and Development. 2014;24(6):686–700. doi: 10.1089/scd.2014.0434.
- Kaczmarek L. From c-Fos to MMP-9: in control of synaptic plasticity to produce healthy and diseased mind, a personal view. Postepy Biochemii. 2018;64(2):101–109. doi: 10.18388/pb.2018_119.
- Gao YJ, Ji RR. C-Fos and pERK, which is a better marker for neuronal activation and central sensitization after noxious stimulation and tissue injury? The Open Pain Journal. 2009;2:11–17. doi: 10.2174/1876386300902010011.
- Liu W, Wu W, Lin G, et al. Physical exercise promotes proliferation and differentiation of endogenous neural stem cells via ERK in rats with cerebral infarction. Molecular Medicine Reports. 2018;18(2):1455–1464. doi: 10.3892/mmr.2018.9147.
- Xiao P, Liu XW, Zhao NN, et al. Correlations of neuronal apoptosis with expressions of c-Fos and c-Jun in rats with post-ischemic reconditioning damage. European Review for Medical and Pharmacological Sciences. 2018;22(9):2832–2838. doi: 10.26355/eurrev_201805_14984.
- Samandari H, Nabavizadeh F, Ashabi G. Age-related difference in protective effect of early post-conditioning on ischemic brain injury: possible involvement of MAP-2/Synaptophysin role. Metabolic Brain Disease. 2019;34(6):1771–1780. doi: 10.1007/s11011-019-00484-3.
- Tu M, Zhu P, Hu S, et al. Notch1 signaling activation contributes to adult hippocampal neurogenesis following traumatic brain injury. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2017;23:5480. doi: 10.12659/MSM.907160.
- Zhang X, Yang C, Gao J, et al. Voluntary running-enhanced synaptic plasticity, learning and memory are mediated by Notch1 signal pathway in C57BL mice. Brain Structure and Function. 2018;223(2):749–767. doi: 10.1007/s00429-017-1521-0.
- Меркулов Г.А. Курс патологогистологической техники. — СПб.: Медгиз, 1961. — 340 с. [Merkulov GA. Course of histopathological technology. St. Petersburg: Medgiz; 1961. 340 p. (In Russ).]
- Саркисов Д.С., Перов Ю.Л., Лысенко Л.В. Микроскопическая техника. — М.: Медицина, 1996. [Sarkisov DS, Perov YuL, Lysenko LV. Microscopic technology. Moscow: Medicine; 1996. (In Russ).]
- Мальков П.Г., Франк Г.А., Москвина Л.В., и др. Основы обеспечения качества в гистологической лабораторной технике: руководство / под ред. П.Г. Малькова, Г.А. Франка. — М.: У Никитских ворот, 2011. — 108 с. [Malkov PG, Frank GA, Moskvina LV, et al. Fundamentals of quality assurance in histological laboratory technology: guidelines. Ed. by Malkova P.G., Franka G.A. Moscow: U Nikitskih vorot; 2011. 108 p. (In Russ.)]
- Мыцик А.В., Акулинин В.А., Степанов С.С., Ларионов П.М. Влияние ишемии на нейроглиальные взаимоотношения лобной коры большого мозга человека // Омский научный вестник. — 2013. — № 1. — С. 74–77. [Mytsik AV, Akulinin VA, Stepanov SS, Larionov PM. Ischemia influence of the neuroglial relations of frontal cortex of the human brain. Omskiy Nauchniy vestnik. 2013;1:74–77. (In Russ.)]
- Мыцик А.В. Использование программы ImageJ для автоматической морфометрии в гистологических исследованиях // Омский научный вестник. — 2011. — № 2. — С. 187–189. [Mytsik АV. Using ImageJ software application for automated morphometry of histological studies. Omskiy Nauchniy vestnik. 2011;2:187–189. (In Russ.)]
- McDowell JJ. Behavioral and neural Darwinism: selectionist function and mechanism in adaptive behavior dynamics. Behavioural Processes. 2010;84(1):358–365. doi: 10.1016/j.beproc.2009.11.011.
- Leigh R, Knutsson L, Zhou J, van Zijl PC. Imaging the physiological evolution of the ischemic penumbra in acute ischemic stroke. Journal of Cerebral Blood Flow & Metabolism. 2018;38(9):1500–1516. doi: 10.1177/0271678X17700913.
- Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? Journal of Neurochemistry. 2016;139(6):1019–1055. doi: 10.1111/jnc.13724.
- Neyazi B, Schwabe K, Alam M, et al. Neuronal expression of c-Fos after epicortical and intracortical electric stimulation of the primary visual cortex. Journal of Chemical Neuroanatomy. 2016;77:121–128. doi: 10.1016/j.jchemneu.2016.06.004.
- Chen X, Shen J, Wang Y, et al. Up-regulation of c-Fos associated with neuronal apoptosis following intracerebral hemorrhage. Cellular and Molecular Neurobiology. 2015;35(3):363–376. doi: 10.1007/s10571-014-0132-z.
Supplementary files
 
				
			 
					 
						 
						 
				