Взаимосвязь воспаления и нарушений гемостаза при сердечно-сосудистых и инфекционных заболеваниях
- Авторы: Быков В.В.1,2, Венгеровский А.И.2, Удут В.В.3,4
-
Учреждения:
- ООО «Инновационные фармакологические разработки»
- Сибирский государственный медицинский университет
- Научно-исследовательский институт фармакологии и регенеративной медицины им. Е.Д. Гольдберга
- Томский национальный исследовательский медицинский центр Российской академии наук
- Выпуск: Том 77, № 4 (2022)
- Страницы: 261-266
- Раздел: АКТУАЛЬНЫЕ ВОПРОСЫ КАРДИОЛОГИИ И СЕРДЕЧНО-СОСУДИСТОЙ ХИРУРГИИ
- URL: https://journal-vniispk.ru/vramn/article/view/125588
- DOI: https://doi.org/10.15690/vramn2124
- ID: 125588
Цитировать
Полный текст
Аннотация
Тромбоз и воспаление взаимно активируются при воспалительных, сердечно-сосудистых и инфекционных заболеваниях. Тромбоз сопровождается развитием воспаления и изменениями иммунного ответа, при воспалении активируется гемостаз и формируются внутрисосудистые тромбы. При совместном применении противовоспалительных и антитромботических средств нередко возникают побочные эффекты, например, нестероидные противовоспалительные средства вызывают образование язв в желудке, осложненных кровотечением. В патогенезе тромбоза и воспаления большое значение имеет дисфункция сосудистого эндотелия, и разработка лекарственных средств, улучшающих функции эндотелия, представляется перспективным подходом для предотвращения тромботических событий, являющихся следствием воспаления или инфекционного заболевания.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Владимир Валерьевич Быков
ООО «Инновационные фармакологические разработки»; Сибирский государственный медицинский университет
Email: vladimir.b.1989@gmail.com
ORCID iD: 0000-0002-5145-2184
SPIN-код: 1202-3719
к.м.н.
Россия, 634021, Томск, ул. Елизаровых, д. 79/4; ТомскАлександр Исаакович Венгеровский
Сибирский государственный медицинский университет
Email: pharm-sibgmu@rambler.ru
ORCID iD: 0000-0001-5094-3742
SPIN-код: 8818-0543
ResearcherId: P-8522-2016
д.м.н., профессор
Россия, ТомскВладимир Васильевич Удут
Научно-исследовательский институт фармакологии и регенеративной медицины им. Е.Д. Гольдберга; Томский национальный исследовательский медицинский центр Российской академии наук
Автор, ответственный за переписку.
Email: udutv@mail.ru
ORCID iD: 0000-0002-3829-7132
SPIN-код: 8645-9815
ResearcherId: A-4208-2017
д.м.н., профессор, член-корреспондент РАН
Россия, ТомскСписок литературы
- Creel-Bulos C, Hockstein M, Amin N, et al. Acute Cor Pulmonale in Critically Ill Patients with COVID-19. N Engl J Med. 2020;382(21):e70. doi: https://doi.org/10.1056/NEJMc2010459
- Cui S, Chen S, Li X, et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020;18(6):1421–1424. doi: https://doi.org/10.1111/jth.14830
- Klok FA, Kruip MJHA, van der Meer NJM, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb Res. 2020;191:148–150. doi: https://doi.org/10.1016/j.thromres.2020.04.041
- Poissy J, Goutay J, Caplan M, et al. Pulmonary Embolism in Patients with COVID-19: Awareness of an Increased Prevalence. Circulation. 2020;142(2):184–186. doi: https://doi.org/10.1161/CIRCULATIONAHA.120.047430
- Hottz ED, Lopes JF, Freitas C, et al. Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation. Blood. 2013;122(20):3405–3414. doi: https://doi.org/10.1182/blood-2013-05-504449
- Nicolai L, Schiefelbein K, Lipsky S, et al. Vascular surveillance by haptotactic blood platelets in inflammation and infection. Nat Commun. 2020;11(1):5778. doi: https://doi.org/10.1038/s41467-020-19515-0
- von Brühl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–835. doi: https://doi.org/10.1084/jem.20112322
- Semeraro F, Ammollo CT, Morrissey JH, et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118(7):1952–1961. doi: https://doi.org/10.1182/blood-2011-03-343061
- Massberg S, Grahl L, von Bruehl ML, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16(8):887–896. doi: https://doi.org/10.1038/nm.2184
- Noubouossie DF, Reeves BN, Strahl BD, et al. Neutrophils: back in the thrombosis spotlight. Blood. 2019;133(20):2186–2197. doi: https://doi.org/10.1182/blood-2018-10-862243
- Verschoor A, Neuenhahn M, Navarini AA, et al. A platelet-mediated system for shuttling blood-borne bacteria to CD8α+ dendritic cells depends on glycoprotein GPIb and complement C3. Nat Immunol. 2011;12(12):1194–1201. doi: https://doi.org/10.1038/ni.2140
- Sreeramkumar V, Adrover JM, Ballesteros I, et al. Neutrophils scan for activated platelets to initiate inflammation. Science. 2014;346 (6214):1234–1238. doi: https://doi.org/10.1126/science.1256478
- Blann AD, Nadar SK, Lip GY. The adhesion molecule P-selectin and cardiovascular disease. Eur Heart J. 2003;24(24):2166–2179. doi: https://doi.org/10.1016/j.ehj.2003.08.021
- Rossaint J, Kühne K, Skupski J, et al. Directed transport of neutrophil-derived extracellular vesicles enables platelet-mediated innate immune response. Nat Commun. 2016;7:13464. doi: https://doi.org/10.1038/ncomms13464
- Schmidt CQ, Verschoor A. Complement and coagulation: so close, yet so far. Blood. 2017;130(24):2581–2582. doi: https://doi.org/10.1182/blood-2017-10-811943
- Peerschke EI, Yin W, Ghebrehiwet B. Complement activation on platelets: implications for vascular inflammation and thrombosis. Mol Immunol. 2010;47(13):2170–2175. doi: https://doi.org/10.1016/j.molimm.2010.05.009
- Wu C, Lu W, Zhang Y, et al. Inflammasome Activation Triggers Blood Clotting and Host Death through Pyroptosis. Immunity. 2019;50(6): 1401–1411.e4. doi: https://doi.org/10.1016/j.immuni.2019.04.003
- Yang X, Cheng X, Tang Y, et al. Bacterial Endotoxin Activates the Coagulation Cascade through Gasdermin D-Dependent Phosphatidylserine Exposure. Immunity. 2019;51(6):983–996.e6. doi: https://doi.org/10.1016/j.immuni.2019.11.005
- Pircher J, Czermak T, Ehrlich A, et al. Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation. Nat Commun. 2018;9(1):1523. doi: https://doi.org/10.1038/s41467-018-03925-2
- Döring Y, Drechsler M, Wantha S, et al. Lack of neutrophil-derived CRAMP reduces atherosclerosis in mice. Circ Res. 2012;110(8):1052–1056. doi: https://doi.org/10.1161/CIRCRESAHA.112.265868
- Burzynski LC, Humphry M, Pyrillou K, et al. The Coagulation and Immune Systems Are Directly Linked through the Activation of Interleukin-1α by Thrombin. Immunity. 2019;50(4):1033–1042.e6. doi: https://doi.org/10.1016/j.immuni.2019.03.003
- Pietras EM. Inflammation: a key regulator of hematopoietic stem cell fate in health and disease. Blood. 2017;130(15):1693–1698. doi: https://doi.org/10.1182/blood-2017-06-780882
- Schönrich G, Raftery MJ. Neutrophil Extracellular Traps Go Viral. Front Immunol. 2016;7:366. doi: https://doi.org/10.3389/fimmu.2016.00366
- Jenne CN, Wong CH, Zemp FJ, et al. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe. 2013;13(2):169–180. doi: https://doi.org/10.1016/j.chom.2013.01.005
- Boilard E, Paré G, Rousseau M, et al. Influenza virus H1N1 activates platelets through FcγRIIA signaling and thrombin generation. Blood. 2014;123(18):2854–2863. doi: https://doi.org/10.1182/blood-2013-07-515536
- Wang Y, Gao H, Shi C, et al. Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIbα. Nat Commun. 2017;8:15559. doi: https://doi.org/10.1038/ncomms15559
- Riegger J, Byrne RA, Joner M, et al. Histopathological evaluation of thrombus in patients presenting with stent thrombosis. A multicenter European study: a report of the prevention of late stent thrombosis by an interdisciplinary global European effort consortium. Eur Heart J. 2016;37(19):1538–1549. doi: https://doi.org/10.1093/eurheartj/ehv419
- Mackman N. New insights into the mechanisms of venous thrombosis. J Clin Invest. 2012;122(7):2331–2336. doi: https://doi.org/10.1172/JCI60229
- Stark K, Philippi V, Stockhausen S, et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood. 2016;128(20): 2435–2449. doi: https://doi.org/10.1182/blood-2016-04-710632
- Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91(1):327–387. doi: https://doi.org/10.1152/physrev.00047.2009
- Gupta N, Sahu A, Prabhakar A, et al. Activation of NLRP3 inflammasome complex potentiates venous thrombosis in response to hypoxia. Proc Natl Acad Sci USA. 2017;114(18):4763–4768. doi: https://doi.org/10.1073/pnas.1620458114
- Ponomaryov T, Payne H, Fabritz L, et al. Mast Cells Granular Contents Are Crucial for Deep Vein Thrombosis in Mice. Circ Res. 2017;121(8): 941–950. doi: https://doi.org/10.1161/CIRCRESAHA.117.311185
- Subramaniam S, Jurk K, Hobohm L, et al. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development. Blood. 2017;129(16):2291–2302. doi: https://doi.org/10.1182/blood-2016-11-749879
- Yago T, Liu Z, Ahamed J, McEver RP. Cooperative PSGL- 1 and CXCR2 signaling in neutrophils promotes deep vein thrombosis in mice. Blood. 2018;132(13):1426–1437. doi: https://doi.org/10.1182/blood-2018-05-850859
- Brill A, Fuchs TA, Savchenko AS, Thomas GM, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10(1):136–144. doi: https://doi.org/10.1111/j.1538-7836.2011.04544.x
- Yipp BG, Petri B, Salina D, et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med. 2012;18(9):1386–1393. doi: https://doi.org/10.1038/nm.2847
- Beristain-Covarrubias N, Perez-Toledo M, Thomas MR, et al. Understanding Infection-Induced Thrombosis: Lessons Learned From Animal Models. Front Immunol. 2019;10:2569. doi: https://doi.org/10.3389/fimmu.2019.02569
- Dalager-Pedersen M, Søgaard M, Schønheyder HC, et al. Risk for myocardial infarction and stroke after community-acquired bacteremia: a 20-year population-based cohort study. Circulation. 2014; 129(13):1387–1396. doi: https://doi.org/10.1161/CIRCULATIONAHA.113.006699
- Loo J, Spittle DA, Newnham M. COVID-19, immunothrombosis and venous thromboembolism: biological mechanisms. Thorax. 2021; 76(4):412–420. doi: https://doi.org/10.1136/thoraxjnl-2020-216243
- Landsem A, Fure H, Christiansen D, et al. The key roles of complement and tissue factor in Escherichia coli-induced coagulation in human whole blood. Clin Exp Immunol. 2015;182(1):81–89. doi: https://doi.org/10.1111/cei.12663
- Nørgaard I, Nielsen SF, Nordestgaard BG. Complement C3 and High Risk of Venous Thromboembolism: 80517 Individuals from the Copenhagen General Population Study. Clin Chem. 2016;62(3):525–534. doi: https://doi.org/10.1373/clinchem.2015.251314
- Gao SJ, Wei W, Chen JT, et al. Hypereosinophilic syndrome presenting with multiple organ infiltration and deep venous thrombosis: A case report and literature review. Medicine (Baltimore). 2016;95(35):e4658. doi: https://doi.org/10.1097/MD.0000000000004658
- Marx C, Novotny J, Salbeck D, et al. Eosinophil-platelet interactions promote atherosclerosis and stabilize thrombosis with eosinophil extracellular traps. Blood. 2019;134(21):1859–1872. doi: https://doi.org/10.1182/blood.2019000518
- Silvestre-Roig C, Braster Q, Wichapong K, et al. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature. 2019;569(7755):236–240. doi: https://doi.org/10.1038/s41586-019-1167-6
- Xia GL, Wang YK, Huang ZQ. The Correlation of Serum Myeloid-Related Protein-8/14 and Eosinophil Cationic Protein in Patients with Coronary Artery Disease. Biomed Res Int. 2016;2016:4980251. doi: https://doi.org/10.1155/2016/4980251
- Novotny J, Oberdieck P, Titova A, et al. Thrombus NET content is associated with clinical outcome in stroke and myocardial infarction. Neurology. 2020;94(22):e2346–e2360. doi: https://doi.org/10.1212/WNL.0000000000009532
- Pertiwi KR, de Boer OJ, Mackaaij C, et al. Extracellular traps derived from macrophages, mast cells, eosinophils and neutrophils are generated in a time-dependent manner during atherothrombosis. J Pathol. 2019;247(4):505–512. doi: https://doi.org/10.1002/path.5212
- Tardif JC, Tanguay JF, Wright SR, et al. Effects of the P-selectin antagonist inclacumab on myocardial damage after percutaneous coronary intervention for non-ST-segment elevation myocardial infarction: results of the SELECT-ACS trial. J Am Coll Cardiol. 2013;61(20):2048–2055. doi: https://doi.org/10.1016/j.jacc.2013.03.003
- Dhanesha N, Nayak MK, Doddapattar P, et al. Targeting myeloid-cell specific integrin α9β1 inhibits arterial thrombosis in mice. Blood. 2020;135(11):857–861. doi: https://doi.org/10.1182/blood.2019002846
- Ortega-Gomez A, Salvermoser M, Rossaint J, et al. Cathepsin G Controls Arterial But Not Venular Myeloid Cell Recruitment. Circulation. 2016;134(16):1176–1188. doi: https://doi.org/10.1161/CIRCULATIONAHA.116.024790
- Vogel S, Bodenstein R, Chen Q, et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest. 2015;125(12):4638–4654. doi: https://doi.org/10.1172/JCI81660
- Franck G, Mawson TL, Folco EJ, et al. Roles of PAD4 and NETosis in Experimental Atherosclerosis and Arterial Injury: Implications for Superficial Erosion. Circ Res. 2018;123(1):33–42. doi: https://doi.org/10.1161/CIRCRESAHA.117.312494
- Schreiber A, Rousselle A, Becker JU, et al. Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. Proc Natl Acad Sci USA. 2017;114(45):E9618–E9625. doi: https://doi.org/10.1073/pnas.1708247114
- Sauter RJ, Sauter M, Reis ES, Emschermann FN, et al. Functional Relevance of the Anaphylatoxin Receptor C3aR for Platelet Function and Arterial Thrombus Formation Marks an Intersection Point Between Innate Immunity and Thrombosis. Circulation. 2018;138(16):1720–1735. doi: https://doi.org/10.1161/CIRCULATIONAHA.118.034600
- Gadi I, Fatima S, Elwakiel A, et al. Different DOACs Control Inflammation in Cardiac Ischemia-Reperfusion Differently. Circ Res. 2021;128(4):513–529. doi: https://doi.org/10.1161/CIRCRESAHA.120.317219
- Nidorf SM, Fiolet ATL, Mosterd A, et al. Colchicine in Patients with Chronic Coronary Disease. N Engl J Med. 2020;383(19):1838–1847. doi: https://doi.org/10.1056/NEJMoa2021372
- Kirchhof P, Ezekowitz MD, Purmah Y, et al. Effects of Rivaroxaban on Biomarkers of Coagulation and Inflammation: A Post Hoc Analysis of the X-VeRT Trial. TH Open. 2020;4(1):e20–e32. doi: https://doi.org/10.1055/s-0040-1701206
- Busch G, Seitz I, Steppich B, et al. Coagulation factor Xa stimulates interleukin-8 release in endothelial cells and mononuclear leukocytes: implications in acute myocardial infarction. Arterioscler Thromb Vasc Biol. 2005;25(2):461–466. doi: https://doi.org/10.1161/01.ATV.0000151279.35780.2d
- Ichikawa H, Shimada M, Narita M, et al. Rivaroxaban, a Direct Factor Xa Inhibitor, Ameliorates Hypertensive Renal Damage Through Inhibition of the Inflammatory Response Mediated by Protease-Activated Receptor Pathway. J Am Heart Assoc. 2019;8(8):e012195. doi: https://doi.org/10.1161/JAHA.119.012195
- Mansour A, Bachelot-Loza C, Nesseler N, et al. P2Y12 Inhibition beyond Thrombosis: Effects on Inflammation. Int J Mol Sci. 2020;21(4):1391. doi: https://doi.org/10.3390/ijms21041391
- Jeong HS, Hong SJ, Cho SA, et al. Comparison of Ticagrelor Versus Prasugrel for Inflammation, Vascular Function, and Circulating Endothelial Progenitor Cells in Diabetic Patients with Non-ST-Segment Elevation Acute Coronary Syndrome Requiring Coronary Stenting: A Prospective, Randomized, Crossover Trial. JACC Cardiovasc Interv. 2017;10(16):1646–1658. doi: https://doi.org/10.1016/j.jcin.2017.05.064
- Morris T, Stables M, Hobbs A, et al. Effects of low-dose aspirin on acute inflammatory responses in humans. J Immunol. 2009;183(3):2089–2096. doi: https://doi.org/10.4049/jimmunol.0900477
- Sager HB, Heidt T, Hulsmans M, et al. Targeting Interleukin-1β Reduces Leukocyte Production After Acute Myocardial Infarction. Circulation. 2015;132(20):1880–1890. doi: https://doi.org/10.1161/CIRCULATIONAHA.115.016160
- Opstal TSJ, Hoogeveen RM, Fiolet ATL, et al. Colchicine Attenuates Inflammation Beyond the Inflammasome in Chronic Coronary Artery Disease: A LoDoCo2 Proteomic Substudy. Circulation. 2020;142(20):1996–1998. doi: https://doi.org/10.1161/CIRCULATIONAHA.120.05056
- Bykov VV, Smol’yakova VI, Chernysheva GA, et al. Effects of a New Antithrombotic Drug GRS, a Soluble Guanylate Cyclase Stimulator, on Endothelial Dysfunction in Rats with Myocardial Infarction. Bull Exp Biol Med. 2022;172(6):709–712. doi: https://doi.org/10.1007/s10517-022-05461-y
- Быков В.В., Чернышева Г.А., Смольякова В.И., и др. Антиагрегантная активность нового производного индолинона // Экспериментальная и клиническая фармакология. — 2019. — Т. 82. — № 7. — С. 10–13. [Bykov VV, Chernysheva GA, Smolyakova VI, et al. Antiplatelet activity of a new indolinone derivative. Experimental and Clinical Pharmacology. 2019;82(7):10–13. (In Russ.)] doi: https://doi.org/10.30906/0869-2092-2019-82-7-10-13
Дополнительные файлы
