Circulating tumor DNA as specific biomarkers for early diagnosis and prognosis of pancreatic cancer

Cover Page

Cite item

Full Text

Abstract

Pancreatic adenocarcinoma is considered one of the most aggressive cancers with high mortality and low 5-year survival rate. This is mainly due to its late detection. Complex anatomical location creates certain difficulties for imaging and puncture biopsy methods, while standard tumor markers do not have high sensitivity and specificity. Thus, the search for specific biomarkers for early diagnosis and prognosis of the disease, as well as monitoring patients with pancreatic cancer during treatment, is a priority to improve patient survival in this terminal disease. Liquid biopsy, which has recently gained a lot of attention including the study of free-circulating tumor DNA (ctDNA) in plasma or serum, is a promising additional method of research. In this review, we will consider the latest findings from the ctDNA study as early and prognostic biomarkers for pancreatic cancer and monitoring the disease during treatment.

About the authors

A. A. Tarmaev

Harbin Medical University

Email: obeylerli@mail.ru
China, Harbin, Heilongjiang Province

Ozal A. Beylerli

Bashkir State Medical University

Author for correspondence.
Email: obeylerli@mail.ru
ORCID iD: 0000-0002-6149-5460
Russian Federation, 450008, Ufa, Lenin street, 3

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7-30. https://doi.org/10.3322/caac.21442.
  2. Malvezzi M, Carioli G, Bertuccio P, et al. European cancer mortality predictions for the year 2018 with focus on colorectal cancer. Ann Oncol. 2018;29(4):1016-1022. https://doi.org/10.1093/annonc/mdy033.
  3. Zińczuk J, Zaręba K, Romaniuk W, et al. Expression of chosen carcinoembryonic-related cell adhesion molecules in pancreatic intraepithelial neoplasia (panin) associated with chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC). Int J Med Sci. 2019;16(4):583-592. https://doi.org/10.7150/ijms.32751.
  4. Состояние онкологической помощи населению России в 2018 году / под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. – М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2019. – 236 с. [Sostoyaniye onkologicheskoy pomoshchi naseleniyu Rossii v 2018 godu. Ed. by A.D. Kaprin, V.V. Starinskiy, G.V. Petrova. Moscow: Moskovskiy nauchno-issledovatel’skiy onkologicheskiy institut im. P.A. Gertsena — filial FGBU “Natsional’nyy meditsinskiy issledovatel’skiy tsentr radiologii” Minzdrava Rossii; 2019. 236 р. (In Russ.)]
  5. Neoptolemos JP, Palmer DH, Ghaneh P, et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. Lancet. 2017;389(10073):1011-1024. https://doi.org/10.1016/S0140-6736(16)32409-6.
  6. Wolfgang CL, Herman JM, Laheru DA, et al. Recent progress in pancreatic cancer. CA Cancer J Clin. 2013;63(5):318-348. https://doi.org/10.3322/caac.21190.
  7. Chin V, Nagrial A, Sjoquist K, et al. Chemotherapy and radiotherapy for advanced pancreatic cancer. Cochrane Database Syst Rev. 2018;3:CD011044. https://doi.org/10.1002/14651858.CD011044.pub2.
  8. Groot VP, Gemenetzis G, Blair AB, et al. Defining and predicting early recurrence in 957 patients with resected pancreatic ductal adenocarcinoma. Ann Surg. 2019;269(6):1154-1162. https://doi.org/10.1097/SLA. 0000000000002734.
  9. Felsenstein M, Hruban RH, Wood LD. New developments in the molecular mechanisms of pancreatic tumorigenesis. Adv Anat Pathol. 2018;25(2):131-142. https://doi.org/10.1097/PAP.0000000000000172.
  10. Groot VP, Rezaee N, Wu W, et al. Patterns, timing, and predictors of recurrence following pancreatectomy for pancreatic ductal adenocarcinoma. Ann Surg. 2018;267(5):936-945. https://doi.org/10.1097/SLA.0000 000000002234.
  11. Murtaza M, Dawson SJ, Tsui DW, et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature. 2013;497(7447):108-112. https://doi.org/10.1038/nature12065.
  12. Groot VP, Mosier S, Javed AA, et al. Circulating tumor dna as a clinical test in resected pancreatic cancer. Clin Cancer Res. 2019;25(16):4973-4984. https://doi.org/ 10.1158/1078-0432.CCR-19-0197.
  13. Jahr S, Hentze H, Englisch S, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61(4):1659-1665.
  14. Jung K, Fleischhacker M, Rabien A. Cell-free DNA in the blood as a solid tumor biomarker: a critical appraisal of the literature. Clin Chim Acta. 2010;411(21-22):1611-1624. https://doi.org/10.1016/j.cca.2010.07.032.
  15. Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer: a survey. Biochim Biophys Acta. 2007;1775(1):181-232. https://doi.org/10.1016/j.bbcan. 2006.10.001.
  16. Diehl F, Li M, Dressman D, He Y, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A. 2005;102(45):16368-16373. https://doi.org/10.1073/pnas.0507904102.
  17. Stroun M, Maurice P, Vasioukhin V, et al. The origin and mechanism of circulating DNA. Ann N Y Acad Sci. 2000;906:161-168. https://doi.org/10.1111/j.1749-6632. 2000.tb06608.x.
  18. Laktionov PP, Tamkovich SN, Rykova EY, et al. Cell-surface-bound nucleic acids: free and cell-surface-bound nucleic acids in blood of healthy donors and breast cancer patients. Ann N Y Acad Sci. 2004;1022:221-227. https://doi.org/10.1196/annals.1318.034.
  19. Diehl F, Schmidt K, Choti MA, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985-990. https://doi.org/10.1038/nm.1789.
  20. Perkins G, Lu H, Garlan F, Taly V. Droplet-based digital PCR: application in cancer research. Adv Clin Chem. 2017;79:43-91. https://doi.org/10.1016/bs.acc.2016.10.001.
  21. Pecuchet N, Zonta E, Didelot A, et al. Base-position error rate analysis of next-generation sequencing applied to circulating tumor dna in non-small cell lung cancer: PLoS Med. 2016;13(12):e1002199. https://doi.org/10.1371/journal.pmed.1002199.
  22. Pietrasz D, Pécuchet N, Garlan F, et al. Plasma circulating tumor DNA in pancreatic cancer patients is a prognostic marker. Clin Cancer Res. 2017;23(1):116-123. https://doi.org/10.1158/1078-0432.CCR-16-0806.
  23. Pecuchet N, Rozenholc Y, Zonta E, et al. Analysis of base-position error rate of next-generation sequencing to detect tumor mutations in circulating DNA. Clin Chem. 2016;62(11):1492-1503. https://doi.org/10.1373/clinchem.2016.258236.
  24. Yachida S, Jones S, Bozic I, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467(7319):1114-1117. https://doi.org/10.1038/nature09515.
  25. Sausen M, Phallen J, Adleff V, et al. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat Commun. 2015;6:7686. https://doi.org/10.1038/ncomms8686.
  26. Tjensvoll K, Lapin M, Buhl T, et al. Clinical relevance of circulating KRAS mutated DNA in plasma from patients with advanced pancreatic cancer. Mol Oncol. 2016;10(4):635-643. https://doi.org/10.1016/j.molonc. 2015.11.012.
  27. Maire F, Micard S, Hammel P, et al. Differential diagnosis between chronic pancreatitis and pancreatic cancer: value of the detection of KRAS2 mutations in circulating DNA. Br J Cancer. 2002;87(5):551-554. https://doi.org/10.1038/sj.bjc.6600475.
  28. Däbritz J, Preston R, Hänfler J, Oettle H. KRAS mutations in the plasma correspond to computed tomographic findings in patients with pancreatic cancer. Pancreas. 2012;41(2):323-325. https://doi.org/10.1097/MPA.0b013 e3182289118.
  29. Sefrioui D, Blanchard F, Toure E, et al. Diagnostic value of CA19.9, circulating tumour DNA and circulating tumour cells in patients with solid pancreatic tumours. Br J Cancer. 2017;117(7):1017-1025. https://doi.org/10.1038/bjc.2017.250.
  30. Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24. https://doi.org/10.1126/scitranslmed.3007094.
  31. Marchese R, Muleti A, Pasqualetti P, et al. Low correspondence between K-ras mutations in pancreatic cancer tissue and detection of K-ras mutations in circulating DNA. Pancreas. 2006;32(2):171-177. https://doi.org/10.1097/01.mpa.0000202938.63084.e3.
  32. Zill OA, Greene C, Sebisanovic D, et al. Cell-free DNA next-generation sequencing in pancreatobiliary carcinomas. Cancer Discov. 2015;5(10):1040-1048. https://doi.org/10.1158/2159-8290.CD-15-0274.
  33. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683-692. https://doi.org/10.1016/j.cell.2007. 01.029.
  34. Fukushige S, Horii A. Road to early detection of pancreatic cancer: attempts to utilize epigenetic biomarkers. Cancer Lett. 2014;342(2):231-237. https://doi.org/10.1016/ j.canlet.2012.03.022.
  35. Yi JM, Guzzetta AA, Bailey VJ, et al. Novel methylation biomarker panel for the early detection of pancreatic cancer. Clin Cancer Res. 2013;19(23):6544-6555. https://doi.org/10.1158/1078-0432.CCR-12-3224.
  36. Hadano N, Murakami Y, Uemura K, et al. Prognostic value of circulating tumour DNA in patients undergoing curative resection for pancreatic cancer. Br J Cancer. 2016;115(1):59-65. https://doi.org/10.1038/bjc.2016.175.
  37. Perets R, Greenberg O, Shentzer T, et al. Mutant KRAS circulating tumor DNA Is an accurate tool for pancreatic cancer monitoring. Oncologist. 2018;23(5):566-572. https://doi.org/10.1634/theoncologist.2017-0467.
  38. Nakano Y, Kitago M, Matsuda S, et al. KRAS mutations in cell-free DNA from preoperative and postoperative sera as a pancreatic cancer marker: a retrospective study. Br J Cancer. 2018;118(5):662-669. https://doi.org/10.1038/bjc.2017.479.
  39. Kinugasa H, Nouso K, Miyahara K, et al. Detection of K-ras gene mutation by liquid biopsy in patients with pancreatic. Cancer. 2015;121(13):2271-2280. https://doi.org/10.1002/cncr.29364.
  40. Wei T, Zhang Q, Li X, et al. Monitoring tumor burden in response to FOLFIRINOX chemotherapy via profiling circulating cell-free DNA in pancreatic cancer. Mol Cancer Ther. 2019;18(1):196-203. https://doi.org/10.1158/1535-7163.MCT-17-1298.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Tarmaev A.A., Beylerli O.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».