Pulmonary artery thrombosis. Clinical aspects and the possibility of prognosis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Recently, there has been a growing interest to the pulmonary artery thrombosis due to the collected data on pathogenesis of this complication and the awareness about developing diagnostic and therapeutic strategy distinctive from those in pulmonary embolism.

AIM: To estimate the pulmonary artery thrombosis clinical presentation, its electrocardiographic and echocardiographic signs and the possibility of applying venous thromboembolism risk assessment scores and diagnostic scoring systems in the cohort of deceased patients with verified pulmonary artery thrombosis.

MATERIALS AND METHODS: A retrospective study based on the medical records analysis of two groups of deceased patients has been carried out. The first group included 80 patients with pulmonary artery thrombosis and the second one included 42 patients with pulmonary embolism. All the patients’ diagnoses were confirmed by the results of sectional and histological studies. 61 patient with COVID-19 and 19 non-COVID urgent patients with different pathologies were included in pulmonary artery thrombosis group. All 42 patients in pulmonary embolism group had verified venous thrombosis or heart chambers thrombi. Clinical presentation peculiarities, the electrocardiographic and echocardiographic reports as well as the possibility of application of Caprini, IMPROVE VTE, Padua, Wells and Geneva scoring systems were analyzed.

RESULTS: None of the 80 pulmonary artery thrombosis patients had hemoptysis, unexpected dyspnoea, sudden strong cough, chest pain, or syncopea. Electrocardiographic changes indicative of right ventricular strain were found in 52.5% in the pulmonary artery thrombosis group and in 57.1% in the pulmonary embolism group. Inversion of T waves, complete and incomplete right bundle branch block were recorded in 14.6% and in 12.5%, in 36.3% and in 47.5% in the pulmonary artery thrombosis group and in the pulmonary embolism group, respectively, without statistical significance between two groups. Echocardiographic findings of right ventricular overload and/or dysfunction were present in 5 out of 10 patients with pulmonary artery thrombosis and in 5 out of 9 patients with pulmonary embolism. The correlation between Caprini, IMPROVE VTE and Padua scores and the incidence of pulmonary artery thrombosis was as strong as with the incidence of pulmonary embolism. On the contrary, Wells and Geneva clinical prediction scores failed to determine the probability of pulmonary artery thrombosis.

CONCLUSIONS: Pulmonary artery thrombosis occurs without obvious clinical manifestations typical for pulmonary embolism. Electrocardiography and echocardiography reveal right ventricular overload in pulmonary artery thrombosis and in pulmonary embolism with equal frequency. Patients with high risk of pulmonary artery thrombosis can be identified by using the Caprini, IMPROVE VTE, Padua Prediction scores.

About the authors

Olga Ya. Porembskaya

North-Western State Medical University named after I.I. Mechnikov

Author for correspondence.
Email: porembskaya@yandex.ru
ORCID iD: 0000-0003-3537-7409
SPIN-code: 9775-1057

MD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, Saint Petersburg

Kirill V. Lobastov

Pirogov Russian National Research Medical University; Moscow City Clinical Hospital No. 24

Email: lobastov_kv@mail.ru
ORCID iD: 0000-0002-5358-7218
SPIN-code: 2313-0691

MD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, Moscow; Moscow

Sergey N. Tsaplin

Pirogov Russian National Research Medical University; Saint Petersburg Institute of Emergency Care named after I.I. Dzhanelidze

Email: tsaplin-sergey@rambler.ru
ORCID iD: 0000-0003-1567-1328
SPIN-code: 8827-1385

MD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, Moscow; Moscow

Leonid A. Laberko

Pirogov Russian National Research Medical University; Moscow City Clinical Hospital No. 24

Email: laberko@list.ru
ORCID iD: 0000-0002-5542-1502
SPIN-code: 8941-5729

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow; Moscow

Victoria A. Ilina

North-Western State Medical University named after I.I. Mechnikov; State Agrarian University

Email: profkomniisp@mail.ru
ORCID iD: 0000-0002-7658-0297
SPIN-code: 8934-1156

MD, Dr. Sci. (Med.)

Russian Federation, Saint Petersburg; Saint Petersburg

Maxim I. Galchenko

State Agrarian University

Email: maxim.galchenko@gmail.com
ORCID iD: 0000-0002-5476-6058
SPIN-code: 8858-2916

senior lecturer

Russian Federation, Saint Petersburg

Viacheslav N. Kravchuk

North-Western State Medical University named after I.I. Mechnikov

Email: kravchuk9@yandex.ru
ORCID iD: 0000-0002-6337-104X
SPIN-code: 4227-2846

MD, Dr. Sci. (Med.), Professor

Russian Federation, Saint Petersburg

Sergey A. Sayganov

North-Western State Medical University named after I.I. Mechnikov

Email: sergey.sayganov@szgmu.ru
ORCID iD: 0000-0001-8325-1937
SPIN-code: 2174-6400

MD, Dr. Sci. (Med.), Professor

Russian Federation, Saint Petersburg

References

  1. Cao Y, Geng C, Li Y, Zhang Y. In situ pulmonary artery thrombosis: a previously overlooked disease. Front Pharmacol. 2021;12:671589. doi: 10.3389/fphar.2021.671589
  2. Ng KH, Wu AK, Cheng VC, et al. Pulmonary artery thrombosis in a patient with severe acute respiratory syndrome. Postgrad Med J. 2005;81(956):e3. doi: 10.1136/pgmj.2004.030049
  3. Baranga L, Khanuja S, Scott J. In situ pulmonary arterial thrombosis: Literature review and clinical significance of a distinct entity. Am J Roentgenol. 2023;221(1):57–68. doi: 10.2214/AJR.23.28996
  4. Kumar DR, Hanlin E, Glurich I, et al. Virchow’s contribution to the understanding of thrombosis and cellular biology. Clin Med Res. 2010;8(3–4):168–172. doi: 10.3121/cmr.2009.866
  5. Ten Cate V, Prochaska JH, Schulz A, et al. Clinical profile and outcome of isolated pulmonary embolism: a systematic review and meta-analysis. EClinicalMedicine. 2023;59:101973. doi: 10.1016/j.eclinm.2023.101973
  6. Tadlock MD, Chouliaras K, Kennedy M, et al. The origin of fatal pulmonary emboli: a postmortem analysis of 500 deaths from pulmonary embolism in trauma, surgical, and medical patients. Am J Surg. 2015;209(6):959–968. doi: 10.1016/j.amjsurg.2014.09.027
  7. von Brühl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–835. doi: 10.1084/jem.20112322
  8. Porembskaya OYa, Lobastov KV, Kravchuk VN, et al. Pulmonary embolism — scattered elements of incomplete puzzle. Flebologiya. 2021;15(3):188–198. (In Russ.) doi: 10.17116/flebo202115031188
  9. Okano M, Hara T, Nishimori M, et al. In vivo imaging of venous thrombus and pulmonary embolism using novel murine venous thromboembolism model. JACC Basic Transl Sci. 2020;5(4):344–356. doi: 10.1016/j.jacbts.2020.01.010
  10. Chernysh IN, Nagaswami C, Kosolapova S, et al. The distinctive structure and composition of arterial and venous thrombi and pulmonary emboli. Sci Rep. 2020;10(1):5112. doi: 10.1038/s41598-020-59526-x
  11. Kearon C, Gent M, Hirsh J, et al. A comparison of three months of anticoagulation with extended anticoagulation for a first episode of idiopathic venous thromboembolism. N Engl J Med. 1999;340(12):901–907. doi: 10.1056/NEJM199903253401201
  12. Khan F, Rahman A, Carrier M, et al. Long term risk of symptomatic recurrent venous thromboembolism after discontinuation of anticoagulant treatment for first unprovoked venous thromboembolism event: Systematic review and meta-analysis. BMJ. 2019;366:14363. doi: 10.1136/bmj.l4363
  13. Bertoletti L, Quenet S, Laporte S, et al. Pulmonary embolism and 3-month outcomes in 4036 patients with venous thromboembolism and chronic obstructive pulmonary disease: Data from the RIETE registry. Respir Res. 2013;14(1):75. doi: 10.1186/1465-9921-14-75
  14. Erelel M, Çuhadaro ĞÇ, Ece T, Arseven O. The frequency of deep venous thrombosis and pulmonary embolus in acute exacerbation of chronic obstructive pulmonary disease. Respir Med. 2002;96(7):515–518. doi: 10.1053/rmed.2002.1313
  15. Lundy JB, Oh JS, Chung KK, et al. Frequency and relevance of acute peritraumatic pulmonary thrombus diagnosed by computed tomographic imaging in combat casualties. J Trauma Acute Care Surg. 2013;75(2 Suppl 2):S215–S220. doi: 10.1097/TA.0b013e318299da66
  16. van Stralen KJ, Doggen CJM, Bezemer ID, et al. Mechanisms of the factor V Leiden paradox. Arterioscler Thromb Vasc Biol. 2008;28(10):1872–1877. doi: 10.1161/ATVBAHA.108.169524
  17. Sohns C, Amarteifio E, Sossalla S, et al. 64-Multidetector-row spiral CT in pulmonary embolism with emphasis on incidental findings. Clin Imaging. 2008;32(5):335–341. doi: 10.1016/j.clinimag.2008.01.028
  18. van Langevelde K, Šrámek A, Vincken PWJ, et al. Finding the origin of pulmonary emboli with a total-body magnetic resonance direct thrombus imaging technique. Haematologica. 2013;98(2):309–315. doi: 10.3324/haematol.2012.069195
  19. Milross L, Majo J, Cooper N, et al. Post-mortem lung tissue: the fossil record of the pathophysiology and immunopathology of severe COVID-19. Lancet Respir Med. 2022;10(1):95–106. doi: 10.1016/S2213-2600(21)00408-2
  20. Menezes RG, Rizwan T, Saad Ali S, et al. Postmortem findings in COVID-19 fatalities: A systematic review of current evidence. Leg Med (Tokyo). 2022;54:102001. doi: 10.1016/j.legalmed.2021.102001
  21. Fox SE, Akmatbekov A, Harbert JL, et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med. 2020;8(7):681–686. doi: 10.1016/S2213-2600(20)30243-5
  22. Weiss EJ, Hamilton JR, Lease KE, Coughlin SR. Protection against thrombosis in mice lacking PAR3. Blood. 2002;100(9):3240–3244. doi: 10.1182/blood-2002-05-1470
  23. Xu J, Zhang X, Pelayo R, et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15(11):1318–1321. doi: 10.1038/nm.2053
  24. Kumar NG, Clark A, Roztocil E, et al. Fibrinolytic activity of endothelial cells from different venous beds. J Surg Res. 2015;194(1):297–303. doi: 10.1016/j.jss.2014.09.028
  25. Vogel S, Bodenstein R, Chen Q, et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest. 2015;125(12):4638–4654. doi: 10.1172/JCI81660
  26. Porembskaya OYa, Kravchuk VN, Galchenko MI, et al. Pulmonary vascular thrombosis in COVID-19: clinical and morphological parallels. Rational Pharmacotherapy in Cardiology. 2022;18(4):376–384. (In Russ.) doi: 10.20996/1819-6446-2022-08-01
  27. Konstantinides SV, Meyer G, Bueno H, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European respiratory society (ERS). Eur Heart J. 2020;41(4):543–603. doi: 10.1093/eurheartj/ehz405
  28. Lobastov K, Schastlivtsev I, Tsaplin S, et al. Prediction of symptomatic venous thromboembolism in Covid-19 Patients: A retrospective comparison of Caprini, Padua, and IMPROVE-DD Scores. J Vasc Surg Venous Lymphat Disord. 2022;10(2):572–573. doi: 10.1016/j.jvsv.2021.12.062
  29. Tsaplin S, Schastlivtsev I, Zhuravlev S, et al. The original and modified Caprini score equally predicts venous thromboembolism in COVID-19 patients. J Vasc Surg Venous Lymphat Disord. 2021;9(6):1371–1381.e4. doi: 10.1016/j.jvsv.2021.02.018
  30. Lobastov KV, Sautina EV, Kovalchuk AV, et al. Concurrent validation of the russian version of patient-completed caprini risk assessment tool in surgical patients. Flebologiya. 2022;16(1):6–15. (In Russ.) doi: 10.17116/flebo2022160116
  31. Lobastov K, Barinov V, Schastlivtsev I, Laberko L. Validation of the Caprini risk assessment model for venous thromboembolism in high-risk surgical patients in the background of standard prophylaxis. J Vasc Surg Venous Lymphat Disord. 2016;4(5):153–610. doi: 10.1016/j.jvsv.2015.09.004
  32. Barbar S, Noventa F, Rossetto V, et al. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: the Padua Prediction Score. J Thromb Haemost. 2010;8(11):2450–2457. doi: 10.1111/j.1538-7836.2010.04044.x
  33. Schünemann HJ, Cushman M, Burnett AE, et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: prophylaxis for hospitalized and nonhospitalized medical patients. Blood Adv. 2018;2(22):3198. doi: 10.1182/bloodadvances.2018022954
  34. Spyropoulos AC, Anderson FA, FitzGerald G, et al. Predictive and associative models to identify hospitalized medical patients at risk for VTE. Chest. 2011;140(3):706–714. doi: 10.1378/chest.10-1944
  35. Wells PS, Anderson DR, Rodger M, et al. Excluding pulmonary embolism at the bedside without diagnostic imaging: management of patients with suspected pulmonary embolism presenting to the emergency department by using a simple clinical model and d-dimer. Ann Intern Med. 2001;13(2):98–107. doi: 10.7326/0003-4819-135-2-200107170-00010
  36. Le Gal G, Righini M, Roy PM, et al. Prediction of pulmonary embolism in the emergency department: the revised Geneva score. Ann Intern Med. 2006;4(3):165–171. doi: 10.7326/0003-4819-144-3-200602070-00004
  37. Huang S, Vignon P, Mekontso-Dessap A, et al. Echocardiography findings in COVID-19 patients admitted to intensive care units: a multi-national observational study (the ECHO-COVID study). Intensive Care Med. 2022;48(6):667–678. doi: 10.1007/s00134-022-06685-2
  38. Karthik Adiga B, Shashi BL, Deepa A. A study on echocardiography findings in severe COVID-19 pneumonia patients. Int J Adv Med. 2022;9(4):468–472. doi: 10.18203/2349-3933.ijam20220786

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».