The influence of comorbid diseases on the profiles of signaling biomarkers (macrophage-derived chemokine, interferon-γ-induced protein 10 kD, soluble CD40 ligand, vascular endothelial growth factor) and severity in patients with COVID-19: clinical studies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Analysis of the effect of comorbid diseases on the concentration of biomarkers will help to deepen the understanding of the pathogenetic mechanisms of the impact of comorbid diseases on the course of COVID-19 and adjust prognostic models for its therapy.

AIM: To study the impact of comorbid diseases on the severity and outcomes of COVID-19. In addition, an analysis of the levels of macrophage-derived chemokine, interferon-γ-induced protein 10 kD, soluble CD40 ligand, vascular endothelial growth factor has been carried out in 472 patients with COVID-19, depending on the presence of various forms of comorbid pathology.

MATERIALS AND METHODS: To study the concentration of biomarkers an analysis has been conducted in a group of 1648 patients with confirmed COVID-19. The study assessed intergroup differences (disease outcome/severity of disease) in the general group (1648 patients) and in the group of patients without comorbidity (343 patients) — Charlson index less than 2 points. 472 medical histories of patients with COVID-19 have been analyzed, including with certain concentrations of the studied biomarkers and comorbid pathology included in the Charlson Index. For comparison, two samples have been formed: an experimental group consisting of patients with COVID-19 and the presence of a certain comorbid disease and a control group consisting of patients suffering from COVID-19 without a specified comorbid disease.

RESULTS: For the first time, data has been obtained indicating that patients with COVID-19 have comorbid conditions with the levels of the studied biomarkers differing significantly from the indicators of the control group. Thus, in patients with arterial hypertension (I10–I15 according to the International Classification of Diseases, 10th revision), chronic heart failure (I50.0), diseases of the vascular system (I70–I79), cerebrovascular diseases (I60–I69), chronic kidney disease (N17–N19), the level of the macrophage-derived chemokine biomarker was significantly lower than in the patients without these diseases. At the same time, in the COVID-19 patients with respiratory diseases (J40–J47), the levels of interferon-γ-induced protein 10 kD and vascular endothelial growth factor were significantly lower than in the patients who did not have lung diseases.

CONCLUSIONS: The study findings obtained have confirmed the role of signaling biomarkers in the development of severe forms and death in patients with COVID-19. Significant influence of comorbid pathology on the course of the new coronavirus infection has been shown.

About the authors

Anna Yu. Anisenkova

City Hospital No. 40, Saint Petersburg; Saint Petersburg State University

Author for correspondence.
Email: anna_anisenkova@list.ru
ORCID iD: 0000-0001-5642-621X
SPIN-code: 4476-5192
Scopus Author ID: 57222098975
ResearcherId: AAQ-4980-2021

MD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, 9 Borisova St., Sestroretsk, Saint Petersburg, 197706; Saint Petersburg

Vadim I. Mazurov

North-Western State Medical University named after. I.I. Mechnikov

Email: maz.nwgmu@yandex.ru
ORCID iD: 0000-0002-0797-2051
SPIN-code: 6823-5482
Scopus Author ID: 16936315400
ResearcherId: J-9643-2014

MD, Dr. Sci. (Med.), Professor, Academician of the RAS, Honored Scientist of the Russian Federation

Russian Federation, Saint Petersburg

Svetlana V. Apalko

City Hospital No. 40, Saint Petersburg; Saint Petersburg State University

Email: Svetlana.apalko@gmail.com
ORCID iD: 0000-0002-3853-4185
SPIN-code: 7053-2507
Scopus Author ID: 35072356200

Cand. Sci. (Biol.)

Russian Federation, 9 Borisova St., Sestroretsk, Saint Petersburg, 197706; Saint Petersburg

Oleg S. Popov

City Hospital No. 40, Saint Petersburg; Saint Petersburg State University

Email: ospopov@outlook.com
ORCID iD: 0000-0003-1778-0165
SPIN-code: 5220-9174
Scopus Author ID: 57222101376

MD

Russian Federation, 9 Borisova St., Sestroretsk, Saint Petersburg, 197706; Saint Petersburg

Natalya N. Sushentseva

City Hospital No. 40, Saint Petersburg

Email: natalia@sushentseva.ru
ORCID iD: 0000-0002-5100-5229
SPIN-code: 5187-2286
Scopus Author ID: 56595238100
ResearcherId: A-9951-2014

MD

Russian Federation, 9 Borisova St., Sestroretsk, Saint Petersburg, 197706

Olga P. Mamaeva

City Hospital No. 40, Saint Petersburg; Saint Petersburg State University

Email: mopetrovna@gmail.com
ORCID iD: 0000-0002-4722-6950

MD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, 9 Borisova St., Sestroretsk, Saint Petersburg, 197706; Saint Petersburg

Sergei V. Mosenko

City Hospital No. 40, Saint Petersburg; Saint Petersburg State University

Email: s.mosenko@spbu.ru
ORCID iD: 0000-0002-1357-4324
SPIN-code: 9543-8506
Scopus Author ID: 57219381057
ResearcherId: AAQ-5181-2021

MD, Cand. Sci. (Med.)

Russian Federation, 9 Borisova St., Sestroretsk, Saint Petersburg, 197706; Saint Petersburg

Andrey M. Sarana

Saint Petersburg State University

Email: asarana@mail.ru
ORCID iD: 0000-0003-3198-8990
SPIN-code: 7922-2751
Scopus Author ID: 35123068500

MD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, Saint Petersburg

Sergey G. Shcherbak

City Hospital No. 40, Saint Petersburg; Saint Petersburg State University

Email: s.g.sherbak@spbu.ru
ORCID iD: 0000-0001-5036-1259
SPIN-code: 1537-9822

MD, Dr. Sci. (Med.), Professor, Honored Scientist of the Russian Federation

Russian Federation, 9 Borisova St., Sestroretsk, Saint Petersburg, 197706; Saint Petersburg

References

  1. Patidar S, Mahor D, Dubey A, et al. Prognostic significance of comorbidities in COVID-19 patients. J Cardiovasc Dis Res. 2023;14(5):1944–1950. doi: 10.31838/jcdr.2023.14.05.262
  2. Gupta A, Marzook H, Ahmad F. Comorbidities and clinical complications associated with SARS-CoV-2 infection: an overview. Clin Exp Med. 2023;23(2):313–331. doi: 10.1007/s10238-022-00821-4
  3. Müller-Wieland D, Marx N, Dreher M, et al. COVID-19 and cardiovascular comorbidities. Exp Clin Endocrinol Diabetes. 2022;130(3):178–189. doi: 10.1055/a-1269-1405
  4. Santra D, Banerjee A, De SK, et al. Relation of ACE2 with co-morbidity factors in SARS-CoV-2 pathogenicity. Comp Clin Path. 2023;32(2):179. doi: 10.1007/s00580-023-03434-9
  5. Luo S, Zhang X, Xiao X, et al. Exploring potential biomarkers and molecular mechanisms of ischemic cardiomyopathy and COVID-19 comorbidity based on bioinformatics and systems biology. Int J Mol Sci. 2023;24(7):6511. doi: 10.3390/ijms24076511
  6. Rief M, Eichinger M, West D, et al. Using cardiovascular risk indices to predict mortality in COVID-19 patients with acute respiratory distress syndrome: a cross sectional study. Sci Rep. 2023;13(1):11452. doi: 10.1038/s41598-023-38732-3
  7. Singh P, Bhaskar Y, Verma P, et al. Impact of comorbidity on patients with COVID-19 in India: A nationwide analysis. Front Public Health. 2023;10:1027312. doi: 10.3389/fpubh.2022.1027312
  8. Ali AS, Sheikh D, Chandler TR, et al. Cardiovascular complications are the primary drivers of mortality in hospitalized patients with SARS-CoV-2 community-acquired pneumonia. Chest. 2023;163(5):1051–1060. doi: 10.1016/j.chest.2022.11.013
  9. Candel FJ, Barreiro P, Salavert M, et al. Expert consensus: main risk factors for poor prognosis in COVID-19 and the implications for targeted measures against SARS-CoV-2. Viruses. 2023;15(7):1449. doi: 10.3390/v15071449
  10. Camacho Moll ME, Mata Tijerina VL, Silva Ramírez B, et al. Sex, age, and comorbidities are associated with SARS-CoV-2 infection, COVID-19 severity, and fatal outcome in a mexican population: a retrospective multi-hospital study. J Clin Med. 2023;12(7):2676. doi: 10.3390/jcm12072676
  11. Kovarik JJ, Kämpf AK, Gasser F, et al. Identification of immune activation markers in the early onset of COVID-19 infection. Front Cell Infect Microbiol. 2021;11:651484. doi: 10.3389/fcimb.2021.651484
  12. Moraes CRP, Borba-Junior IT, De Lima F, et al. Association of Ang/Tie2 pathway mediators with endothelial barrier integrity and disease severity in COVID-19. Front Physiol. 2023:14:1113968. doi: 10.3389/fphys.2023.1113968
  13. Al-Tamimi AO, Yusuf AM, Jayakumar MN, et al. SARS-CoV-2 infection induces soluble platelet activation markers and PAI-1 in the early moderate stage of COVID-19. Int J Lab Hematol. 2022;44(4):712–721. doi: 10.1111/ijlh.13829
  14. Dechamps M, De Poortere J, Martin M, et al. Inflammation-induced coagulopathy substantially differs between COVID-19 and septic shock: a prospective observational study. Front Med (Lausanne). 2022;8:780750. doi: 10.3389/fmed.2021.780750
  15. Sasson JM, Campo JJ, Carpenter RM, et al. Diverse humoral immune responses in younger and older adult COVID-19 patients. mBio. 2021;12(3):e0122921. doi: 10.1128/mBio.01229-21
  16. Patterson BK, Guevara-Coto J, Yogendra R, et al. Immune-based prediction of COVID-19 severity and chronicity decoded using machine learning. Front Immunol. 2021;12:700782. doi: 10.3389/fimmu.2021.700782
  17. Hamzeh-Cognasse H, Mansour A, Reizine F, et al. Platelet-derived sCD40L: specific inflammatory marker for early-stage severe acute respiratory syndrome coronavirus 2 infection. Virol J. 2021;18(1):211. doi: 10.1186/s12985-021-01680-3
  18. Lev S, Gottesman T, Levin GS, et al. Observational cohort study of IP-10’s potential as a biomarker to aid in inflammation regulation within a clinical decision support protocol for patients with severe COVID-19. PLoS One. 2021;16(1):e0245296. doi: 10.1371/journal.pone.0245296
  19. Rizzi M, Costanzo M, Tonello S, et al. Prognostic markers in hospitalized COVID-19 patients: the role of IP-10 and C-reactive protein. Dis Markers. 2022;2022:3528312. doi: 10.1155/2022/3528312
  20. Bunprakob S, Hemachudha P, Ruchisrisarod C, et al. IP-10 and complement activation as friend or foe in COVID-19. Int J Immunopathol Pharmacol. 2022;36:3946320221096202. doi: 10.1177/03946320221096202
  21. Tegethoff SA, Danziger G, Kühn D, et al. TNF-related apoptosis-inducing ligand, interferon gamma-induced protein 10, and C-reactive protein in predicting the progression of SARS-CoV-2 infection: a prospective cohort study. Int J Infect Dis. 2022;122:178–187. doi: 10.1016/j.ijid.2022.05.051
  22. Salton F, Confalonieri P, Campisciano G, et al. Cytokine profiles as potential prognostic and therapeutic markers in SARS-CoV-2-induced ARDS. J Clin Med. 2022;11(11):2951. doi: 10.3390/jcm11112951
  23. Rivas-Fuentes S, Julián Valdés V, Espinosa B, et al. Could SARS-CoV-2 blocking of ACE2 in endothelial cells result in upregulation of CX3CL1, promoting thrombosis in COVID-19 patients? Med Hypotheses. 2021;151:110570. doi: 10.1016/j.mehy.2021.110570
  24. Tong M, Yan X, Jiang Y, et al. Endothelial biomarkers in patients recovered from COVID-19 one year after hospital discharge: a cross-sectional study. Mediterr J Hematol Infect Dis. 2022;14(1):e2022033. doi: 10.4084/MJHID.2022.033
  25. De Winter FHR, Hotterbeekx A, Huizing MT, et al. Blood cytokine analysis suggests that SARS-CoV-2 infection results in a sustained tumour promoting environment in cancer patients. Cancers (Basel). 2021;13(22):5718. doi: 10.3390/cancers13225718
  26. Agresti N, Lalezari JP, Amodeo PP, et al. Disruption of CCR5 signaling to treat COVID-19-associated cytokine storm: Case series of four critically ill patients treated with leronlimab. J Transl Autoimmun. 2021:4:100083. doi: 10.1016/j.jtauto.2021.100083
  27. Rapp M, Wintergerst MWM, Kunz WG, et al. CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. J Exp Med. 2019;216(5):1170–1181. doi: 10.1084/jem.20170277
  28. Chatterjee S, Datey A, Sengupta S, et al. Clinical, virological, immunological, and genomic characterization of asymptomatic and symptomatic cases with SARS-CoV-2 infection in India. Front Cell Infect Microbiol. 2021;11:725035. doi: 10.3389/fcimb.2021.725035
  29. Krysko O, Kondakova E, Vershinina O, et al. Artificial intelligence predicts severity of COVID-19 based on correlation of exaggerated monocyte activation, excessive organ damage and hyperinflammatory syndrome: a prospective clinical study. Front Immunol. 2021;12:715072. doi: 10.3389/fimmu.2021.715072
  30. Ling L, Chen Z, Lui G, et al. Longitudinal cytokine profile in patients with mild to critical COVID-19. Front Immunol. 2021;12:763292. doi: 10.3389/fimmu.2021.763292
  31. Sauty A, Dziejman M, Taha RA et al. The T cell-specific CXC chemokines IP-10, Mig, and I-TAC are expressed by activated human bronchial epithelial cells. J Immunol. 1999;162(6):3549–3558. doi: 10.4049/jimmunol.162.6.3549
  32. Laing AG, Lorenc A, Del Molino Del Barrio I, et al. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat Med. 2020;26(10):1623–1635. doi: 10.1038/s41591-020-1038-6
  33. Luo J, Chen YL, Chen W, et al. Pre-existing asthma as a comorbidity does not modify cytokine responses and severity of COVID-19. Allergy Asthma Clin Immunol. 2021;17(1):67. doi: 10.1186/s13223-021-00569-8

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Charlson Index indicators in the studied group

Download (101KB)
3. Fig. 2. Boxplot of macrophage-derived chemokine concentration in the studied groups (absence/presence of cerebrovascular disease history); p-value obtained using Mann–Whitney U test. MDC, macrophage-derived chemokine levels

Download (123KB)
4. Fig. 3. Boxplot of vascular endothelial growth factor concentration levels expressed in picograms per milliliter in the studied groups (absence/presence of chronic unspecific lung disease history); p-value obtained using Mann–Whitney U test. VEGF, vascular endothelial growth factor level

Download (117KB)

Copyright (c) 2023 Eco-Vector



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».