Cardio-rheumatology: present and future. Part I

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Patients suffering from rheumatic diseases are at high risk of the development and accelerated progression of cardiovascular due to inflammation as one of the etiological factors of atherogenesis and heart failure. To choose the rational and safe treatment, especially in comorbid patients, it is necessary to have a comprehensive and complete understanding of the mechanisms of these relationships, as well as the most accurate determination of cardiovascular risk using modern validated scales. The first part of the review presents the results of current experimental and clinical studies on the effect of the chronic inflammatory and its biomarkers on the development, course and prognosis of cardiovascular diseases.

About the authors

Yi Ma

The third Xiangya Hospital of the Central South University

Email: mayi2908@yandex.ru
ORCID iD: 0000-0002-2339-4263

MD, Cand. Sci. (Medicine)

China, Changsha

Zhuo Wang

The third Xiangya Hospital of the Central South University

Email: wangzhuo1008@yandex.ru
ORCID iD: 0000-0002-2415-4982

MD, Cand. Sci. (Medicine)

China, Changsha

Vadim I. Mazurov

North-Western State Medical University named after I.I. Mechnikov; Clinical Rheumatology Hospital No. 25

Email: maz.nwgmu@yandex.ru
ORCID iD: 0000-0002-0797-2051
SPIN-code: 6823-5482

MD, Dr. Sci. (Medicine), Professor, Academician of the RAS, Honored Scientist of the Russian Federation

Russian Federation, Saint Petersburg; Saint Petersburg

Evgeniy A. Trofimov

North-Western State Medical University named after I.I. Mechnikov

Email: evgeniy.trofimov@szgmu.ru
ORCID iD: 0000-0003-3236-4485
SPIN-code: 4358-1663

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg

Roman A. Bashkinov

North-Western State Medical University named after I.I. Mechnikov; Clinical Rheumatology Hospital No. 25

Author for correspondence.
Email: bashkinov-roman@mail.ru
ORCID iD: 0000-0001-9344-1304
SPIN-code: 5169-5066

assistant of the department

Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Alfaddagh A, Martin SS, Leucker TM, et al. Inflammation and cardiovascular disease: From mechanisms to therapeutics. Am J Prev Cardiol. 2020;4:100130. doi: 10.1016/j.ajpc.2020.100130
  2. Ridker PM. Anticytokine agents: Targeting interleukin signaling pathways for the treatment of atherothrombosis. Circ Res. 2019;124(3):437–450. doi: 10.1161/CIRCRESAHA.118.313129
  3. Miyamoto T, Carrero JJ, Stenvinkel P. Inflammation as a risk factor and target for therapy in chronic kidney disease. Curr Opin Nephrol Hypertens. 2011;20(6):662–668. doi: 10.1097/MNH.0b013e32834ad504
  4. Shirazi LF, Bissett J, Romeo F, Mehta JL. Role of inflammation in heart failure. Curr Atheroscler Rep. 2017;19(6):27. doi: 10.1007/s11883-017-0660-3
  5. Libby P. Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr. 2006;83(2):456S–460S. doi: 10.1093/ajcn/83.2.456S
  6. Prasad M, Hermann J, Gabriel SE, et al. Cardiorheumatology: cardiac involvement in systemic rheumatic disease. Nat Rev Cardiol. 2015;12(3):168–176. doi: 10.1038/nrcardio.2014.206
  7. Conrad N, Verbeke G, Molenberghs G, et al. Autoimmune diseases and cardiovascular risk: a population-based study on 19 autoimmune diseases and 12 cardiovascular diseases in 22 million individuals in the UK. Lancet. 2022;400(10354):733–743. doi: 10.1016/S0140-6736(22)01349-6
  8. Solomon DH, Karlson EW, Rimm EB, et al. Cardiovascular morbidity and mortality in women diagnosed with rheumatoid arthritis. Circulation. 2003;107(9):1303–1307. doi: 10.1161/01.cir.0000054612.26458.b2
  9. Avina-Zubieta JA, Thomas J, Sadatsafavi M, et al. Risk of incident cardiovascular events in patients with rheumatoid arthritis: a meta-analysis of observational studies. Ann Rheum Dis. 2012;71(9):1524–1529. doi: 10.1136/annrheumdis-2011-200726
  10. Schieir O, Tosevski C, Glazier RH, et al. Incident myocardial infarction associated with major types of arthritis in the general population: a systematic review and meta-analysis. Ann Rheum Dis. 2017;76(8):1396–1404. doi: 10.1136/annrheumdis-2016-210275
  11. Fonturenko AYu, Bashkinov RA, Mazurov VI, et al. Features of gouty arthritis and comorbid conditions in it — data from the city register of Saint Petersburg for 2000–2019. Russian Medical Inquiry. 2020;4(8):475–482. EDN: QDXKZK doi: 10.32364/2587-6821-2020-4-8-475-482
  12. Mazurov VI, Bashkinov RA, Fonturenko AYu, et al. Features of the course of rheumatoid arthritis and osteoarthritis in patients with asymptomatic hyperuricemia. Herald of North-Western State Medical University named after I.I. Mechnikov. 2020;12(3):63–72. EDN: XQZWVY doi: 10.17816/mechnikov44234
  13. Mazurov VI, Bashkinov RA, Gaidukova IZ, Fonturenko AYu. The effect of asymptomatic hyperuricemia on comorbidities and the possibility of its correction. Russian Medical Inquiry. 2021;29(7):24–30. EDN: EZWQOO
  14. Drapkina OM, Mazurov VI, Martynov AI, et al. “Focus on hyperuricemia”. The resolution of the Expert Council. Cardiovascular Therapy and Prevention. 2023;22(4):77–84. EDN: KRCKAU doi: 10.15829/1728-8800-2023-3564
  15. Chazova IE, Zhernakova YuV, Kislyak OA, et al. Consensus on patients with hyperuricemia and high cardiovascular risk treatment: 2022. Systemic Hypertension. 2022;19(1):5–22. EDN: HBLVVV doi: 10.38109/2075-082X-2022-1-5-22
  16. Borghi C, Domienik-Karłowicz J, Tykarski A, et al. Expert consensus for the diagnosis and treatment of patient with hyperuricemia and high cardiovascular risk: 2021 update. Cardiol J. 2021;28(1):1–14. doi: 10.5603/CJ.a2021.0001
  17. Drapkina OM, Mazurov VI, Martynov AI, et al. Consensus statement on the management of patients with asymptomatic hyperuricemia in general medical practice. Cardiovascular Therapy and Prevention. 2024;23(1):89–104. EDN: WXKMIG doi: 10.15829/1728-8800-2024-3737
  18. Lutgens E, Atzler D, Döring Y, et al. Immunotherapy for cardiovascular disease. Eur Heart J. 2019;40(48):3937–3946. doi: 10.1093/eurheartj/ehz283
  19. Ridker PM. From C-reactive protein to Interleukin-6 to Interleukin-1: Moving upstream to identify novel targets for atheroprotection. Circ Res. 2016;118(1):145–156. doi: 10.1161/CIRCRESAHA.115.306656
  20. Jin Y, Fu J. Novel insights into the NLRP 3 inflammasome in atherosclerosis. J Am Heart Assoc. 2019;8(12):e012219. doi: 10.1161/JAHA.119.012219
  21. Hansson GK, Libby P, Tabas I. Inflammation and plaque vulnerability. J Intern Med. 2015;278(5):483–493. doi: 10.1111/joim.12406
  22. Tintut Y, Patel J, Parhami F, Demer LL. Tumor necrosis factor-alpha promotes in vitro calcification of vascular cells via the cAMP pathway. Circulation. 2000;102(21):2636–2642. doi: 10.1161/01.cir.102.21.2636
  23. Kelly-Arnold A, Maldonado N, Laudier D, et al. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc Natl Acad Sci U S A. 2013;110(26):10741–10746. doi: 10.1073/pnas.1308814110
  24. Lin TC, Tintut Y, Lyman A, et al. Mechanical response of a calcified plaque model to fluid shear force. Ann Biomed Eng. 2006;34(10):1535–1541. doi: 10.1007/s10439-006-9182-9
  25. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342(12):836–843. doi: 10.1056/NEJM200003233421202
  26. Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation. 2000;101(15):1767–1772. doi: 10.1161/01.cir.101.15.1767
  27. Emerging Risk Factors Collaboration, Kaptoge S, Di Angelantonio E, et al. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med. 2012;367(14):1310–1320. doi: 10.1056/NEJMoa1107477
  28. Glynn RJ, MacFadyen JG, Ridker PM. Tracking of high-sensitivity C-reactive protein after an initially elevated concentration: the JUPITER Study. Clin Chem. 2009;55(2):305–312. doi: 10.1373/clinchem.2008.120642
  29. Emerging Risk Factors Collaboration, Kaptoge S, Di Angelantonio E, et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet. 2010;375(9709):132–140. doi: 10.1016/S0140-6736(09)61717-7
  30. Kaptoge S, Seshasai SR, Gao P, et al. Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis. Eur Heart J. 2014;35(9):578–589. doi: 10.1093/eurheartj/eht367
  31. Ridker PM. A test in context: High-sensitivity C-reactive protein. J Am Coll Cardiol. 2016;67(6):712–723. doi: 10.1016/j.jacc.2015.11.037
  32. Ridker PM, Rane M. Interleukin-6 signaling and Anti-Interleukin-6 therapeutics in cardiovascular disease. Circ Res. 2021;128(11):1728–1746. doi: 10.1161/CIRCRESAHA.121.319077
  33. Liuzzo G, Biasucci LM, Gallimore JR, et al. The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. N Engl J Med. 1994;331(7):417–424. doi: 10.1056/NEJM199408183310701
  34. Held C, White HD, Stewart RAH, et al. Inflammatory biomarkers Interleukin-6 and C-reactive protein and outcomes in stable coronary heart disease: experiences from the STABILITY (Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy) trial. J Am Heart Assoc. 2017;6(10):e005077. doi: 10.1161/JAHA.116.005077
  35. Vasan RS, Sullivan LM, Roubenoff R, et al. Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: the Framingham Heart Study. Circulation. 2003;107(11):1486–1491. doi: 10.1161/01.cir.0000057810.48709.f6
  36. Pellicori P, Zhang J, Cuthbert J, et al. High-sensitivity C-reactive protein in chronic heart failure: patient characteristics, phenotypes, and mode of death. Cardiovasc Res. 2020;116(1):91–100. doi: 10.1093/cvr/cvz198
  37. Libby P. Interleukin-1 Beta as a target for atherosclerosis therapy: Biological basis of CANTOS and beyond. J Am Coll Cardiol. 2017;70(18):2278–2289. doi: 10.1016/j.jacc.2017.09.028
  38. Bevilacqua MP, Pober JS, Wheeler ME, et al. Interleukin-1 activation of vascular endothelium. Effects on procoagulant activity and leukocyte adhesion. Am J Pathol. 1985;121(3):394–403.
  39. Libby P, Warner SJ, Friedman GB. Interleukin 1: a mitogen for human vascular smooth muscle cells that induces the release of growth-inhibitory prostanoids. J Clin Invest. 1988;81(2):487–498. doi: 10.1172/JCI113346
  40. Interleukin 1 Genetics Consortium. Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist: a Mendelian randomisation analysis. Lancet Diabetes Endocrinol. 2015;3(4):243–253. doi: 10.1016/S2213-8587(15)00034-0
  41. Kastrati A, Koch W, Berger PB, et al. Protective role against restenosis from an interleukin-1 receptor antagonist gene polymorphism in patients treated with coronary stenting. J Am Coll Cardiol. 2000;36(7):2168–2173. doi: 10.1016/s0735-1097(00)01014-7
  42. Chamberlain J, Gunn J, Francis S, et al. Temporal and spatial distribution of interleukin-1 beta in balloon injured porcine coronary arteries. Cardiovasc Res. 1999;44(1):156–165. doi: 10.1016/s0008-6363(99)00175-3
  43. Shimokawa H, Ito A, Fukumoto Y, et al. Chronic treatment with interleukin-1 beta induces coronary intimal lesions and vasospastic responses in pigs in vivo. The role of platelet-derived growth factor. J Clin Invest. 1996;97(3):769–776. doi: 10.1172/JCI118476
  44. Arutyunov GP, Paleev FN, Tarlovskaya EI, et al. Pericarditis. Clinical Guidelines 2022. Russian Journal of Cardiology. 2023;28(3):107–167. EDN: QMPQPU doi: 10.15829/1560-4071-2023-5398
  45. Adler Y, Charron P, Imazio M, et al. 2015 ESC Guidelines for the diagnosis and management of pericardial diseases: The Task Force for the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology (ESC)Endorsed by: The European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2015;36(42):2921–2964. doi: 10.1093/eurheartj/ehv318
  46. Loppnow H, Libby P. Adult human vascular endothelial cells express the IL6 gene differentially in response to LPS or IL1. Cell Immunol. 1989;122(2):493–503. doi: 10.1016/0008-8749(89)90095-6
  47. Huber SA, Sakkinen P, Conze D, et al. Interleukin-6 exacerbates early atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 1999;19(10):2364–2367. doi: 10.1161/01.atv.19.10.2364
  48. Liu Y, Chen Y, Lin Y, et al. Impacts of pro-inflammatory cytokines variant on cardiometabolic profile and premature coronary artery disease: a systematic review and meta-analysis. J Cell Mol Med. 2024;28(8):e18311. doi: 10.1111/jcmm.18311
  49. Lindmark E, Diderholm E, Wallentin L, Siegbahn A. Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. JAMA. 2001;286(17):2107–2113. doi: 10.1001/jama.286.17.2107
  50. Markousis-Mavrogenis G, Tromp J, Ouwerkerk W, et al. The clinical significance of interleukin-6 in heart failure: results from the BIOSTAT-CHF study. Eur J Heart Fail. 2019;21(8):965–973. doi: 10.1002/ejhf.1482
  51. Romano M, Sironi M, Toniatti C, et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity. 1997;6(3):315–325. doi: 10.1016/s1074-7613(00)80334-9
  52. Alsaffar H, Martino N, Garrett JP, Adam AP. Interleukin-6 promotes a sustained loss of endothelial barrier function via Janus kinase-mediated STAT3 phosphorylation and de novo protein synthesis. Am J Physiol Cell Physiol. 2018;314(5):C589–C602. doi: 10.1152/ajpcell.00235.2017
  53. Kobalava ZhD, Konradi AO, Nedogoda SV, et al. Arterial hypertension in adults. Clinical guidelines 2020. Russian Journal of Cardiology. 2020;25(3):149–218. EDN: TCRBRB doi: 10.15829/1560-4071-2020-3-3786
  54. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens. 2018;36(10):1953–2041. doi: 10.1097/HJH.0000000000001940
  55. Shalnova SA, Deev AD, Artamonova GV, et al. Hyperuricemia and its correlates in the Russian population (results of ESSE-RF epidemiological study). Rational Pharmacotherapy in Cardiology. 2014;10(2):153–159. EDN: SCOUHN doi: 10.20996/1819-6446-2014-10-2-153-159
  56. Zhang M, Zhu X, Wu J, et al. Prevalence of hyperuricemia among Chinese adults: Findings from two nationally representative cross-sectional surveys in 2015-16 and 2018-19. Front Immunol. 2022;12:791983. doi: 10.3389/fimmu.2021.791983
  57. Kimura Y, Tsukui D, Kono H. Uric acid in inflammation and the pathogenesis of atherosclerosis. Int J Mol Sci. 2021;22(22):12394. doi: 10.3390/ijms222212394
  58. Yip K, Cohen RE, Pillinger MH. Asymptomatic hyperuricemia: is it really asymptomatic? Curr Opin Rheumatol. 2020;32(1):71–79. doi: 10.1097/BOR.0000000000000679
  59. Liang L, Hou X, Bainey KR, et al. The association between hyperuricemia and coronary artery calcification development: a systematic review and meta-analysis. Clin Cardiol. 2019;42(11):1079–1086. doi: 10.1002/clc.23266
  60. Wang M, Lin X, Yang X, Yang Y. Research progress on related mechanisms of uric acid activating NLRP3 inflammasome in chronic kidney disease. Ren Fail. 2022;44(1):615–624. doi: 10.1080/0886022X.2022.2036620
  61. Peng LH, He Y, Xu WD, et al. Carotid intima-media thickness in patients with hyperuricemia: a systematic review and meta-analysis. Aging Clin Exp Res. 2021;33(11):2967–2977. doi: 10.1007/s40520-021-01850-x
  62. Kim SY, Guevara JP, Kim KM, et al. Hyperuricemia and coronary heart disease: a systematic review and meta-analysis. Arthritis Care Res (Hoboken). 2010;62(2):170–180. doi: 10.1002/acr.20065
  63. Huang H, Huang B, Li Y, et al. Uric acid and risk of heart failure: a systematic review and meta-analysis. Eur J Heart Fail. 2014;16(1):15–24. doi: 10.1093/eurjhf/hft132
  64. Li B, Chen L, Hu X, et al. Association of serum uric acid with all-cause and cardiovascular mortality in diabetes. Diabetes Care. 2023;46(2):425–433. doi: 10.2337/dc22-1339
  65. Nishino M, Egami Y, Kawanami S, et al. Lowering uric acid may improve prognosis in patients with hyperuricemia and heart failure with preserved ejection fraction. J Am Heart Assoc. 2022;11(19):e026301. doi: 10.1161/JAHA.122.026301
  66. Vlad-Sabin I, Roxana B, Adina-Flavia CM, et al. The relationship between serum uric acid and ejection fraction of the left ventricle. J Clin Med. 2021;10(17):4026. doi: 10.3390/jcm10174026
  67. Alhusain A, Bruce IN. Cardiovascular risk and inflammatory rheumatic diseases. Clin Med (Lond). 2013;13(4):395–397. doi: 10.7861/clinmedicine.13-4-395
  68. Peters MJ, Symmons DP, McCarey D, et al. EULAR evidence-based recommendations for cardiovascular risk management in patients with rheumatoid arthritis and other forms of inflammatory arthritis. Ann Rheum Dis. 2010;69(2):325–331. doi: 10.1136/ard.2009.113696
  69. Schoenfeld SR, Kasturi S, Costenbader KH. The epidemiology of atherosclerotic cardiovascular disease among patients with SLE: a systematic review. Semin Arthritis Rheum. 2013;43(1):77–95. doi: 10.1016/j.semarthrit.2012.12.002
  70. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140(11):e596–e646. doi: 10.1161/CIR.0000000000000678
  71. Ridker PM. How common is residual inflammatory risk? Circ Res. 2017;120(4):617–619. doi: 10.1161/CIRCRESAHA.116.310527
  72. Bohula EA, Giugliano RP, Cannon CP, et al. Achievement of dual low-density lipoprotein cholesterol and high-sensitivity C-reactive protein targets more frequent with the addition of ezetimibe to simvastatin and associated with better outcomes in IMPROVE-IT. Circulation. 2015;132(13):1224–1233. doi: 10.1161/CIRCULATIONAHA.115.018381
  73. Ridker PM, Danielson E, Fonseca FA, et al. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. Lancet. 2009;373(9670):1175–1182. doi: 10.1016/S0140-6736(09)60447-5
  74. D’Agostino RB Sr, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008;117(6):743–753. doi: 10.1161/CIRCULATIONAHA.107.699579
  75. Crowson CS, Matteson EL, Roger VL, et al. Usefulness of risk scores to estimate the risk of cardiovascular disease in patients with rheumatoid arthritis. Am J Cardiol. 2012;110(3):420–424. doi: 10.1016/j.amjcard.2012.03.044
  76. Drosos GC, Vedder D, Houben E, et al. EULAR recommendations for cardiovascular risk management in rheumatic and musculoskeletal diseases, including systemic lupus erythematosus and antiphospholipid syndrome. Ann Rheum Dis. 2022;81(6):768–779. doi: 10.1136/annrheumdis-2021-221733
  77. Conroy RM, Pyörälä K, Fitzgerald AP, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;24(11):987–1003. doi: 10.1016/s0195-668x(03)00114-3
  78. SCORE2 working group and ESC Cardiovascular risk collaboration. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. Eur Heart J. 2021;42(25):2439–2454. doi: 10.1093/eurheartj/ehab309
  79. Ridker PM, Buring JE, Rifai N, Cook NR. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA. 2007;297(6):611–619. doi: 10.1001/jama.297.6.611
  80. Solomon DH, Greenberg J, Curtis JR, et al. Derivation and internal validation of an expanded cardiovascular risk prediction score for rheumatoid arthritis: a Consortium of Rheumatology Researchers of North America Registry Study. Arthritis Rheumatol. 2015;67(8):1995–2003. doi: 10.1002/art.39195
  81. Wahlin B, Innala L, Magnusson S, et al. Performance of the expanded cardiovascular risk prediction score for rheumatoid arthritis is not superior to the ACC/AHA risk calculator. J Rheumatol. 2019;46(2):130–137. doi: 10.3899/jrheum.171008
  82. Hippisley-Cox J, Coupland C, Vinogradova Y, et al. Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study. BMJ. 2007;335:136. doi: 10.1136/bmj.39261.471806.55
  83. Hippisley-Cox J, Coupland C, Vinogradova Y, et al. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ. 2008;336(7659):1475–1482. doi: 10.1136/bmj.39609.449676.25
  84. Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ. 2017;357:j2099. doi: 10.1136/bmj.j2099
  85. Woodward M, Brindle P, Tunstall-Pedoe H; SIGN group on risk estimation. Adding social deprivation and family history to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC). Heart. 2007;93(2):172–176. doi: 10.1136/hrt.2006.108167
  86. Cacciapaglia F, Spinelli FR, Erre GL, et al. Italian recommendations for the assessment of cardiovascular risk in rheumatoid arthritis: a position paper of the Cardiovascular Obesity and Rheumatic Disease (CORDIS) Study Group of the Italian Society for Rheumatology. Clin Exp Rheumatol. 2023;41(9):1784–1791. doi: 10.55563/clinexprheumatol/hyaki6
  87. Giampaoli S, Palmieri L, Chiodini P, et al. La carta del rischio cardiovascolare globale [The global cardiovascular risk chart]. Ital Heart J Suppl. 2004;5(3):177–185.
  88. Berti A, Matteson EL, Crowson CS, et al. Risk of cardiovascular disease and venous thromboembolism among patients with incident ANCA-associated vasculitis: a 20-year population-based cohort study. Mayo Clin Proc. 2018;93(5):597–606. doi: 10.1016/j.mayocp.2018.02.010

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. The role of inflammation in the formation of atherosclerotic plaque [1]. At the early stage, endothelial dysfunction and subintimal accumulation of cholesterol crystals initiate an inflammatory reaction. At the same time, an increase in the expression of cell adhesion molecules (ICAM, VCAM) and various selectins promotes the migration of immunocompetent cells to the sites of early formation of atherosclerotic plaques. Hypoxia and phagocytosis by macrophages of cholesterol in the form of oxidized low-density lipoprotein (Ox-LDL) are accompanied by the assembly of the NLRP3 inflammasome, which results in the activation of interleukin-1β (IL-β) and interleukin-18 (IL-18). In turn, pro-inflammatory cytokines induce procoagulant activity, increased adhesion to endothelium, proliferation of smooth muscle cells (SMC), increase the production of reactive oxygen species (ROS) and potentiate the inflammatory cascade with the production of interleukin-6 (IL-6) in the vascular wall. T cells, mast cells and dendritic cells support the transmission of signals modulating the formation and growth of atherosclerotic plaques, including by increasing the synthesis of tumor necrosis factor alpha (TNF-α), while the accumulation of foam cells is complicated by the formation of a necrotic lipid core. Moreover, interleukin-1β activates the production of matrix metalloproteinases (MMP) that damage collagen in the atherosclerotic plaque cap. Finally, in the process of increasing the size of the lipid core, the thinning of the fibrous capsule leads to its instability, and also raises the likelihood of rupture and subsequent thrombosis

Download (475KB)

Copyright (c) 2024 Eco-Vector



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».