Comorbidity problems in patients with osteoporosis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Osteoporosis is a metabolic skeletal disease characterized by decreased bone mass, impaired microarchitecture of bone tissue and, as a consequence, fractures with minimal trauma. The social significance of osteoporosis is determined by its consequences — fractures of the vertebral bodies and bones of the peripheral skeleton, leading to high medical costs and causing a high level of disability, including disability and mortality. Osteoporosis is most often combined with cardiovascular diseases caused by atherosclerosis, which are widespread and are the leading cause of disability and mortality. A small number of studies have been devoted to the study of the features of clinical manifestations of cardiovascular diseases in the combination of coronary heart disease and osteoporosis.

AIM: To identify the frequency and severity of comorbid diseases and their risk factors in postmenopausal osteoporosis.

MATERIALS AND METHODS: A retrospective and prospective cohort study was conducted from 2013 to 2023. 8250 women with postmenopausal osteoporosis were examined and the data from the medical records of these patients who applied to the Osteoporosis Center of the North-Western State Medical University named after I.I. Mechnikov of the Ministry of Health of the Russian Federation from 2013 to 2020 were analyzed. At the prospective stage, two comparison groups of 100 patients with and without postmenopausal osteoporosis were formed from 500 patients with comorbid diseases (coronary heart disease, hypertension, type 2 diabetes, stroke, transient ischemic attack). Bone mineral density was assessed based on the Hologic Discoveri Wi dual-energy X-ray absorptiometry at 2 points in the lumbar spine (L1–L4) and the femoral neck. Along with traditional laboratory examination methods, bone metabolism markers (total calcium, phosphorus, vitamin D, urine analysis for deoxypyridinoline, C-terminal telopeptide of type 1 collagen, osteocalcin, alkaline phosphatase, parathyroid hormone) were assessed dynamically. In all the patients, along with a general clinical examination, an assessment of risk factors for cardiovascular disease and osteoporosis was performed.

RESULTS: Body mass index was higher in the group of patients with osteoporosis — 28.4 (26.9–32.4) kg/m2 (p < 0.001), versus 27.64 (25.8–30.0) kg/m2 (p < 0.05). Bone mineral density in the group of patients with osteoporosis was statistically lower than in the group without osteoporosis. In the group of patients with osteoporosis, the risk of fractures was high and amounted to 37 (95% confidence interval 15.0–38.50) %, p < 0.001), versus in the control group 9.55 (95% confidence interval 7.67–15.0) % (p < 0.001) according to the FRAX questionnaire for the Russian Federation. In the group of patients with osteoporosis, the Charlson index values were 5.1 (95% confidence interval 4.7–5.6) points. As a result of the correlation analysis, a reliable positive relationship was revealed between low bone mineral density L1–L4 and hip with bone metabolism: alkaline phosphatase, C-terminal telopeptide of type 1 collagen, vitamin D, osteocalcin, urinary deoxypyridinoline. We found a negative relationship between bone mineral density and the Charlson index, absolute ten-year risk of hip fracture and the duration of early menopause, and the level of hypertension. To assess the dependence of QRISK3-2018 on osteoporosis risk factors in the group of patients with osteoporosis, multiple linear regression was performed. This model was characterized by a statistically significant correlation between the factors and the dependent variable of high tightness. The coefficient of determination was 0.608, indicating a 60.8% contribution of the factors taken into account in the model to the variance of QRISK3-2018.

CONCLUSIONS: In women with postmenopausal osteoporosis, comorbid pathology is more common, aggravating the course of the disease. Knowledge of the prevalence of concomitant pathology and joint risk factors will make it possible to simultaneously form groups at increased risk of development, which will ensure prevention of both diseases with the same non-medical means and drugs.

About the authors

Vadim I. Mazurov

North-Western State Medical University named after I.I. Mechnikov

Email: maz.nwgmu@yandex.ru
ORCID iD: 0000-0002-0797-2051
SPIN-code: 6823-5482

MD, Dr. Sci. (Medicine), Professor, Academician of the RAS, Honored Scientist of the Russian Federation

Russian Federation, Saint Petersburg

Irina B. Belyaeva

North-Western State Medical University named after I.I. Mechnikov

Email: belib@mail.ru
ORCID iD: 0000-0002-7981-6349
SPIN-code: 3136-9062

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

Elena S. Zhugrova

North-Western State Medical University named after I.I. Mechnikov

Author for correspondence.
Email: jugrova@mail.ru
ORCID iD: 0000-0002-8622-5205
SPIN-code: 5504-3159

MD, Cand. Sci. (Medicine), Assistant Professor

Russian Federation, Saint Petersburg

Daniel A. Shimanski

Academician I.P. Pavlov First St. Petersburg State Medical University

Email: shimanskidaniel@gmail.com
ORCID iD: 0000-0002-6903-2217
SPIN-code: 2022-5223
Russian Federation, Saint Petersburg

References

  1. Belaya ZhE, Belova KYu, Biryukova EV, et al. Federal clinical recommendations for the diagnosis, treatment and prevention of osteoporosis. Osteoporosis and osteopathies. 2021;24(2):4–47. EDN: TUONYE doi: 10.14341/osteo12930
  2. Hernlund E, Svedbom A, Ivergård M, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2013;8(1):136. doi: 10.1007/s11657-013-0136-1
  3. Arceo-Mendoza RM, Camacho PM. Postmenopausal Osteoporosis: Latest Guidelines. Endocrinol Metab Clin North Am. 2021;50(2):167–178. doi: 10.1016/j.ecl.2021.03.009
  4. Kanis JA, Cooper C, Rizzoli R, et al. Executive summary of the European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Calcif Tissue Int. 2019;104(3):235–238. doi: 10.1007/s00223-018-00512-x
  5. Borgström F, Karlsson L, Ortsäter G, et al. Fragility fractures in Europe: burden, management and opportunities. Arch Osteoporos. 2020;15(1):59. doi: 10.1007/s11657-020-0706-y
  6. Lesnyak O, Bilezikian JP, Zakroyeva A, et al. Report on the audit on burden of osteoporosis in eight countries of the Eurasian region: Armenia, Belarus, Georgia, Moldova, Kazakhstan, the Kyrgyz Republic, the Russian Federation, and Uzbekistan. Arch Osteoporos. 2020;15(1):175. doi: 10.1007/s11657-020-00836-y
  7. Adachi JD, Loannidis G, Berger C, et al. The influence of osteoporotic fractures on health-related quality of life in community-dwelling men and women across Canada. Osteoporos Int. 2001;12(11):903–908. doi: 10.1007/s001980170017
  8. Azevedo A, Prado AF, Feldman S, et al. MMPs are involved in osteoporosis and are correlated with cardiovascular diseases. Curr Pharm Des. 2018;24(16):1801–1810. doi: 10.2174/1381612824666180604112925
  9. McLean RR. Proinflammatory cytokines and osteoporosis. Curr Osteoporos Rep. 2009;7(4):134–139. doi: 10.1007/s11914-009-0023-2
  10. Boonen S, Autier P, Barette M, et al. Functional outcome and quality of life following hip fracture in elderly women: a prospective controlled study. Osteoporos Int. 2004;15(2):87–94. doi: 10.1007/s00198-003-1515-z
  11. von der Recke P, Hansen MA, Hassager C. The association between low bone mass at the menopause and cardiovascular mortality. Am J Med. 1999;106(3):273–278. doi: 10.1016/s0002-9343(99)00028-5
  12. Karwowski W, Naumnik B, Szczepański M, Myśliwiec M. The mechanism of vascular calcification – a systematic review. Med Sci Monit. 2012;18(1):RA1–11. doi: 10.12659/msm.882181
  13. Wassertheil-Smoller S, Anderson G, Psaty BM, et al. Hypertension and its treatment in postmenopausal women: baseline data from the Women’s Health Initiative. Hypertension. 2000;36(5):780–789. doi: 10.1161/01.hyp.36.5.780
  14. Oganov RG, Denisov IN, Simanenkov VI, et al. Comorbidities in practice. Clinical guidelines. Cardiovascular therapy and prevention. 2017;16(6):5–56. EDN: ZVZZGR doi: 10.15829/1728-8800-2017-6-5-56
  15. Kiel DP, Kauppila LI, Cupples LA, et al. Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham Heart Study. Calcif Tissue Int. 2001;68(5):271–276. doi: 10.1007/BF02390833
  16. Skripnikova IA, Alikhanova NA, Kolchina MA, et al. Atherosclerosis and osteoporosis. Common targets for cardiovascular and anti-osteoporosis drugs (Part I). The influence of cardiovascular drugs on the strength of bone tissue. Rational pharmacotherapy in cardiology. 2019;15(1):69–76. EDN: CPLSNV doi: 10.20996/1819-6446-2019-15-1-69-76
  17. Ignatenko GA, Nemsadze IG, Mirovich ED, et al. The role of cytokines in bone tissue remodeling and the pathogenesis of postmenopausal osteoporosis. Medical Bulletin of the South of Russia. 2020;11(2):6–18. EDN: JLMNIV doi: 10.21886/2219-8075-2020-11-2-6-18
  18. Sennerby U, Melhus H, Gedeborg R, et al. Cardiovascular diseases and risk of hip fracture. JAMA. 2009;302(15):1666–1673. doi: 10.1001/jama.2009.1463
  19. Drapkina OM, Kontsevaya AV, Kalinina AM, et al. Comorbidity of patients with chronic non-infectious diseases in the practice of a general practitioner. Eurasian guide. Cardiovascular therapy and prevention. 2024;23(3):113–418. EDN: AVZLPJ doi: 10.15829/1728-8800-2024-3996
  20. Veronese N, Stubbs B, Crepaldi G, et al. Relationship between low bone mineral density and fractures with incident cardiovascular disease: a systematic review and meta-analysis. J Bone Miner Res. 2017;32(5):1126–1135. doi: 10.1002/jbmr.3089
  21. Lemoine L, Buckinx F, Aidoud A, et al. Relationships between obesity markers and bone parameters in community-dwelling older adults. Aging Clin Exp Res. 2024;36(1):49. doi: 10.1007/s40520-023-02673-8
  22. De Laet C, Kanis JA, Odén A, et al. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int. 2005;16(11):1330–1338. doi: 10.1007/s00198-005-1863
  23. Liu X, Chen F, Liu L, Zhang Q. Prevalence of osteoporosis in patients with diabetes mellitus: a systematic review and meta-analysis of observational studies. BMC Endocr Disord. 2023;23(1):1. doi: 10.1186/s12902-022-01260-8
  24. Hou W, Chen S, Zhu C, et al. Associations between smoke exposure and osteoporosis or osteopenia in a US NHANES population of elderly individuals. Front Endocrinol (Lausanne). 2023;14:1074574. doi: 10.3389/fendo.2023.1074574
  25. Cirovic A, Schmidt FN, Vujacic M, et al. Lower microhardness along with less heterogeneous mineralization in the femoral neck of individuals with type 2 diabetes mellitus indicates higher fracture risk. JBMR Plus. 2024;8(3):ziae005. doi: 10.1093/jbmrpl/ziae005

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Frequency of bone fractures by locations

Download (82KB)
3. Fig. 2. Charlson comorbidity index (p = 0.004)

Download (48KB)
4. Fig. 3. Frequency of functional classes (FC) of chronic heart failure in the women with comorbid pathology (p < 0.05)

Download (92KB)

Copyright (c) 2024 Eco-Vector



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».