Heart failure and netosis: a modern view of pathophysiology and treatment methods

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Over the past 20 years, the prevalence of chronic cardiac insufficiency in the Russian Federation has increased from 6.1 to 8.2%. Chronic, mild inflammation is also one of the main factors affecting the development and progression of chronic cardiac insufficiency. The purpose of the review is to analyze the literature data on the role of netosis in the pathogenesis of chronic cardiac insufficiency, as well as to consider new potential possibilities of chronic cardiac insufficiency therapy. As a result of the research search, 3366 publications were extracted from PubMed and 2223 publications found using Google Scholar. The search queries included the following keywords and their combinations: “netosis”, “neutrophil extracellular traps”, “NET”, “heart failure”, “myocardial infarction”, “atrial fibrillation”, “coronary heart disease”, “myocarditis”. The mechanisms of neutrophil extracellular traps formation and their contribution to the development of chronic cardiac insufficiency certainly require further study. In particular, the direct role of netosis in the development of fibrosis, hypertrophy and dysfunction of the left ventricle is still unknown. However, recent genetic and pharmacological studies show that inhibitors of myeloperoxidase, neutrophil elastase and peptidylargine deiminase can be effective, at least in chronic cardiac insufficiency in conditions of unfavorable remodeling after myocardial infarction, heart valve diseases and decompensated ventricular hypertrophy, the deterioration of which leads to the development of chronic cardiac insufficiency. These results are important for understanding the role of netosis in the pathophysiology of chronic cardiac insufficiency and developing new methods of its treatment.

About the authors

Seda S. Rashidova

Khasavyurt Perinatal Center

Author for correspondence.
Email: rrstr1990@mail.ru
ORCID iD: 0009-0002-9090-0688
SPIN-code: 5824-7314
Russian Federation, Khasavyurt

Diana A. Morgoeva

North Ossetian State Medical Academy

Email: dianamorgoeva1508@mail.ru
ORCID iD: 0009-0001-3662-4638
Russian Federation, Vladikavkaz

Agunda Z. Tuganova

North Ossetian State Medical Academy

Email: agunda.tug@gmail.com
ORCID iD: 0009-0006-5152-5597
Russian Federation, Vladikavkaz

Diana T. Albastova

North Ossetian State Medical Academy

Email: dalbastova@bk.ru
ORCID iD: 0009-0008-6968-6780
Russian Federation, Vladikavkaz

Victoria T. Bagaeva

North Ossetian State Medical Academy

Email: masha.simenenkova@mail.ru
ORCID iD: 0009-0000-4869-525X
Russian Federation, Vladikavkaz

Amina A. Dzaparova

North Ossetian State Medical Academy

Email: davidkachmazov@inbox.ru
ORCID iD: 0009-0004-1290-5509
Russian Federation, Vladikavkaz

Lyudmila A. Taugazova

North Ossetian State Medical Academy

Email: taugazovala@mail.ru
ORCID iD: 0009-0006-3720-3436
Russian Federation, Vladikavkaz

Yana V. Ataeva

North Ossetian State Medical Academy

Email: ataeva.yana@bk.ru
ORCID iD: 0009-0001-5378-0704
Russian Federation, Vladikavkaz

Ekaterina I. Krupnova

North Ossetian State Medical Academy

Email: kkkrupnova@mail.ru
ORCID iD: 0009-0009-5554-6629
Russian Federation, Vladikavkaz

Arkady E. Shakhramanov

Pirogov Russian National Research Medical University

Email: arshah02@yandex.ru
ORCID iD: 0009-0000-7772-1090
Russian Federation, Moscow

Irina A. Kodzaeva

North Ossetian State Medical Academy

Email: irinakodzaeva2002@gmail.com
ORCID iD: 0009-0005-0340-2894
Russian Federation, Vladikavkaz

Islam A. Abuev

North Ossetian State Medical Academy

Email: iabuyev@list.ru
ORCID iD: 0009-0001-8576-6616
Russian Federation, Vladikavkaz

Tamila A. Aidaeva

North Ossetian State Medical Academy

Email: imtamila@mail.ru
ORCID iD: 0009-0009-3891-9657
Russian Federation, Vladikavkaz

Mizhgona Sh. Abduvalieva

Bashkir State Medical University

Email: mijgona2001@bk.ru
ORCID iD: 0009-0009-4232-2036
Russian Federation, Ufa

References

  1. Polyakov DS, Fomin IV, Belenkov YuN, et al. Chronic heart failure in the Russian Federation: what has changed over 20 years of follow-up? Results of the EPOCH-CHF study. Kardiologiia. 2021;61(4):4–14. EDN: WSZNFS doi: 10.18087/cardio.2021.4.n1628
  2. Boytsov SA. Chronic heart failure: evolution of etiology, prevalence and mortality over the past 20 years. Therapeutic Archive. 2022;94(1):5–8. EDN: HRWCBS doi: 10.26442/00403660.2022.01.201317
  3. Tokmachev RE, Budnevsky AV, Kravchenko AYa. The role of inflammation in the pathogenesis of chronic heart failure. Therapeutic Archive. 2016;88(9):106–110. EDN: WTDAOB doi: 10.17116/terarkh2016889106-110
  4. Van Tassell BW, Arena R, Biondi-Zoccai G, et al. Effects of interleukin-1 blockade with anakinra on aerobic exercise capacity in patients with heart failure and preserved ejection fraction (from the D-HART pilot study). Am J Cardiol. 2014;113(2):321–327. doi: 10.1016/j.amjcard.2013.08.047
  5. Van Tassell BW, Abouzaki NA, Oddi Erdle C, et al. Interleukin-1 blockade in acute decompensated heart failure: a randomized, double-blinded, placebo-controlled pilot study. J Cardiovasc Pharmacol. 2016;67(6):544–551. doi: 10.1097/FJC.0000000000000378
  6. Chung ES, Packer M, Lo KH, et al. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation. 2003;107(25):3133–3140. doi: 10.1161/01.CIR.0000077913.60364.D2
  7. Mann DL, McMurray JJ, Packer M, et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation. 2004;109(13):1594–1602. doi: 10.1161/01.CIR.0000124490.27666.B2
  8. Vorobjeva NV. Neutrophil extracellular traps: new aspects. Moscow university biological sciences bulletin. 2020;75(4):173–188. EDN: DGNESH doi: 10.3103/S0096392520040112
  9. lukhareva AE, Afonin GV, Melnikova AA, et al. The NETOsis phenomena as a functional features of peripheral blood neutrophils and its role in the pathogenesis of infections and oncological diseases: a review. Journal of Modern Oncology. 2023;24(4):487–493. EDN: XBOAIW doi: 10.26442/18151434.2022.4.201786
  10. Arpinati L, Shaul ME, Kaisar-Iluz N, et al. NETosis in cancer: a critical analysis of the impact of cancer on neutrophil extracellular trap (NET) release in lung cancer patients vs. mice. Cancer Immunol Immunother. 2020;69(2):199–213. doi: 10.1007/s00262-019-02474-x
  11. Chen T, Li Y, Sun R, et al. Receptor-mediated NETosis on neutrophils. Front Immunol. 2021;12:775267. doi: 10.3389/fimmu.2021.775267
  12. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18(2):134–147. doi: 10.1038/nri.2017.105
  13. Lodge KM, Cowburn AS, Li W, Condliffe AM. The impact of hypoxia on neutrophil degranulation and consequences for the host. Int J Mol Sci. 2020;21(4):1183. doi: 10.3390/ijms21041183
  14. Thiam HR, Wong SL, Wagner DD, Waterman CM. Cellular mechanisms of NETosis. Annu Rev Cell Dev Biol. 2020;36:191–218. doi: 10.1146/annurev-cellbio-020520-111016
  15. Thiam HR, Wong SL, Qiu R, et al. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. Proc Natl Acad Sci USA. 2020;117(13):7326–7337. doi: 10.1073/pnas.1909546117
  16. Wong SL, Wagner DD. Peptidylarginine deiminase 4: a nuclear button triggering neutrophil extracellular traps in inflammatory diseases and aging. FASEB J. 2018;32(12):fj201800691R. doi: 10.1096/fj.201800691R
  17. Huang H, Zhang H, Onuma AE, Tsung A. Neutrophil elastase and neutrophil extracellular traps in the tumor microenvironment. Adv Exp Med Biol. 2020;1263:13–23. doi: 10.1007/978-3-030-44518-8_2
  18. Wei R, Li X, Wang X, et al. Trypanosoma evansi triggered neutrophil extracellular traps formation dependent on myeloperoxidase, neutrophil elastase, and extracellular signal-regulated kinase 1/2 signaling pathways. Vet Parasitol. 2021;296:109502. doi: 10.1016/j.vetpar.2021.109502
  19. Dudeck J, Kotrba J, Immler R, et al. Directional mast cell degranulation of tumor necrosis factor into blood vessels primes neutrophil extravasation. Immunity. 2021;54(3):468–483.e5. doi: 10.1016/j.immuni.2020.12.017
  20. Tang X, Wang P, Zhang R, et al. KLF2 regulates neutrophil activation and thrombosis in cardiac hypertrophy and heart failure progression. J Clin Invest. 2022;132(3):e147191. doi: 10.1172/JCI147191
  21. Kostin S, Giannakopoulos T, Richter M, et al. Coronary microthrombi in the failing human heart: the role of von Willebrand factor and PECAM-1. Mol Cell Biochem. 2024;479(12):3437–3446. doi: 10.1007/s11010-024-04942-0
  22. Hein S, Arnon E, Kostin S, et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation. 2003;107(7):984–991. doi: 10.1161/01.cir.0000051865.66123.b7
  23. Marques FZ, Prestes PR, Byars SG, et al. Experimental and human evidence for lipocalin-2 (neutrophil gelatinase-associated lipocalin [NGAL]) in the development of cardiac hypertrophy and heart failure. J Am Heart Assoc. 2017;6(6):e005971. doi: 10.1161/JAHA.117.005971
  24. Li RHL, Fabella A, Nguyen N, et al. Circulating neutrophil extracellular traps in cats with hypertrophic cardiomyopathy and cardiogenic arterial thromboembolism. J Vet Intern Med. 2023;37(2):490–502. doi: 10.1111/jvim.16676
  25. Wang Y, Sano S, Oshima K, et al. Wnt5a-mediated neutrophil recruitment has an obligatory role in pressure overload-induced cardiac dysfunction. Circulation. 2019;140(6):487–499. doi: 10.1161/CIRCULATIONAHA.118.038820
  26. Ng LL, Pathik B, Loke IW, et al. Myeloperoxidase and C-reactive protein augment the specificity of B-type natriuretic peptide in community screening for systolic heart failure. Am Heart J. 2006;152(1):94–101. doi: 10.1016/j.ahj.2005.09.020
  27. Tang WH, Shrestha K, Troughton RW, et al. Integrating plasma high-sensitivity C-reactive protein and myeloperoxidase for risk prediction in chronic systolic heart failure. Congest Heart Fail. 2011;17(3):105–109. doi: 10.1111/j.1751-7133.2011.00221.x
  28. Hage C, Michaëlsson E, Kull B, et al. Myeloperoxidase and related biomarkers are suggestive footprints of endothelial microvascular inflammation in HFpEF patients. ESC Heart Fail. 2020;7(4):1534–1546. doi: 10.1002/ehf2.12700
  29. Yndestad A, Landro L, Ueland T, et al. Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical and experimental heart failure. Eur Heart J. 2009;30(10):1229–1236. doi: 10.1093/eurheartj/ehp088
  30. Nelson MD, Victor RG, Szczepaniak EW, et al. Cardiac steatosis and left ventricular hypertrophy in patients with generalized lipodystrophy as determined by magnetic resonance spectroscopy and imaging. Am J Cardiol. 2013;112(7):1019–1024. doi: 10.1016/j.amjcard.2013.05.036
  31. Bai B, Yang W, Fu Y, et al. Seipin knockout mice develop heart failure with preserved ejection fraction. JACC Basic Transl Sci. 2019;4(8):924–937. doi: 10.1016/j.jacbts.2019.07.008
  32. Savchenko AS, Borissoff JI, Martinod K, et al. VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice. Blood. 2014; 123(1):141–148. doi: 10.1182/blood-2013-07-514992
  33. Du M, Yang W, Schmull S, et al. Inhibition of peptidyl arginine deiminase-4 protects against myocardial infarction induced cardiac dysfunction. Int Immunopharmacol. 2020;78:106055. doi: 10.1016/j.intimp.2019.106055
  34. Martinod K, Witsch T, Erpenbeck L, et al. Peptidylarginine deiminase 4 promotes age-related organ fibrosis. J Exp Med. 2017;214(2):439–458. doi: 10.1084/jem.20160530
  35. Du M, Yang L, Gu J, et al. Inhibition of peptidyl arginine deiminase-4 prevents renal ischemia-reperfusion-induced remote lung injury. Mediators Inflamm. 2020;2020:1724206. doi: 10.1155/2020/1724206
  36. Ijichi T, Sundararaman N, Martin TG, et al. Peptidyl arginine deiminase inhibition alleviates angiotensin II-induced fibrosis. Am J Transl Res. 2023;15(7):4558–4572.
  37. Ivey AD, Matthew Fagan B, Murthy P, et al. Chloroquine reduces neutrophil extracellular trap (NET) formation through inhibition of peptidyl arginine deiminase 4 (PAD4). Clin Exp Immunol. 2023;211(3):239–247. doi: 10.1093/cei/uxad005
  38. Zeng JH, Liu YX, Yuan J, et al. First case of COVID-19 complicated with fulminant myocarditis: a case report and insights. Infection. 2020;48(5):773–777. doi: 10.1007/s15010-020-01424-5
  39. Cuomo V, Esposito R, Santoro C. Fulminant myocarditis in the time of coronavirus. Eur Heart J. 2020;41(22):2121. doi: 10.1093/eurheartj/ehaa354
  40. Hu H, Ma F, Wei X, Fang Y. Coronavirus fulminant myocarditis treated with glucocorticoid and human immunoglobulin. Eur Heart J. 2021;42(2):206. doi: 10.1093/eurheartj/ehaa190
  41. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N Engl J Med. 2020;383(2):120–128. doi: 10.1056/NEJMoa2015432
  42. Guagliumi G, Sonzogni A, Pescetelli I, et al. Microthrombi and ST-Segment-Elevation Myocardial Infarction in COVID-19. Circulation. 2020;142(8):804–809. doi: 10.1161/CIRCULATIONAHA.120.049294
  43. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020;217(6):e20200652. doi: 10.1084/jem.20200652
  44. Johnson JE, McGuone D, Xu ML, et al. Coronavirus disease 2019 (COVID-19) coronary vascular thrombosis: correlation with neutrophil but not endothelial activation. Am J Pathol. 2022;192(1):112–120. doi: 10.1016/j.ajpath.2021.09.004
  45. Middleton EA, He XY, Denorme F, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020;136(10):1169–1179. doi: 10.1182/blood.2020007008
  46. Maisch B, Pankuweit S. Inflammatory dilated cardiomyopathy: Etiology and clinical management. Herz. 2020;45(3):221–229. doi: 10.1007/s00059-020-04900-8
  47. Rivadeneyra L, Charó N, Kviatcovsky D, et al. Role of neutrophils in CVB3 infection and viral myocarditis. J Mol Cell Cardiol. 2018;125:149–161. doi: 10.1016/j.yjmcc.2018.08.029
  48. Müller I, Vogl T, Pappritz K, et al. Pathogenic role of the damage-associated molecular patterns S100A8 and S100A9 in coxsackievirus B3-induced myocarditis. Circ Heart Fail. 2017;10(11):e004125. doi: 10.1161/CIRCHEARTFAILURE.117.004125
  49. Zhou Y, Hann J, Schenten V, et al. Role of S100A8/A9 for cytokine secretion, revealed in neutrophils derived from ER-Hoxb8 progenitors. Int J Mol Sci. 2021;22(16):8845. doi: 10.3390/ijms22168845
  50. Del Buono MG, Moroni F, Montone RA, et al. Ischemic cardiomyopathy and heart failure after acute myocardial infarction. Curr Cardiol Rep. 2022;24(10):1505–1515. doi: 10.1007/s11886-022-01766-6
  51. Liu X, Fu Y, Wang J, et al. β-Conglycinin induces the formation of neutrophil extracellular traps dependent on NADPH oxidase-derived ROS, PAD4, ERK1/2 and p38 signaling pathways in mice. Food Funct. 2021;12(1):154–161. doi: 10.1039/d0fo02337j
  52. Haritha VH, George A, Shaji BV, Anie Y. NET-associated citrullinated histones promote LDL aggregation and foam cell formation in vitro. Exp Cell Res. 2020;396(2):112320. doi: 10.1016/j.yexcr.2020.112320
  53. Kelesidis T, Roberts CK, Huynh D, et al. A high throughput biochemical fluorometric method for measuring lipid peroxidation in HDL. PLoS One. 2014;9(11):e111716. doi: 10.1371/journal.pone.0111716
  54. Jaehn P, Sasko B, Holmberg C, et al. Levels of high-density lipoprotein lipid peroxidation according to spatial socioeconomic deprivation and rurality among patients with coronary artery disease. Eur J Prev Cardiol. 2022;29(15):e343–e346. doi: 10.1093/eurjpc/zwac068
  55. Yazdandoust S, Parizadeh SMR, Ghayour-Mobarhan M, et al. High-density lipoprotein lipid peroxidation as a diagnostics biomarker in coronary artery disease. Biofactors. 2022;48(3):634–642. doi: 10.1002/biof.1819
  56. Pagonas N, Mueller R, Weiland L, et al. Oxidized high-density lipoprotein associates with atrial fibrillation. Heart Rhythm. 2024;21(4):362–369. doi: 10.1016/j.hrthm.2023.11.024
  57. Itabe H, Sawada N, Makiyama T, Obama T. Structure and dynamics of oxidized lipoproteins in vivo: roles of high-density lipoprotein. Biomedicines. 2021;9(6):655. doi: 10.3390/biomedicines9060655
  58. Sawada N, Obama T, Koba S, et al. Circulating oxidized LDL, increased in patients with acute myocardial infarction, is accompanied by heavily modified HDL. J Lipid Res. 2020;61(6):816–829. doi: 10.1194/jlr.RA119000312
  59. Ru D, Zhiqing H, Lin Z, et al. Oxidized high-density lipoprotein accelerates atherosclerosis progression by inducing the imbalance between treg and teff in LDLR knockout mice. APMIS. 2015;123(5):410–421. doi: 10.1111/apm.12362
  60. Carlisle MA, Fudim M, DeVore AD, Piccini JP. Heart failure and atrial fibrillation, like fire and fury. JACC Heart Fail. 2019;7(6):447–456. doi: 10.1016/j.jchf.2019.03.005
  61. Rudolph V, Andrié RP, Rudolph TK, et al. Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation. Nat Med. 2010;16(4):470–474. doi: 10.1038/nm.2124
  62. Gibson PH, Cuthbertson BH, Croal BL, et al. Usefulness of neutrophil/lymphocyte ratio as predictor of new-onset atrial fibrillation after coronary artery bypass grafting. Am J Cardiol. 2010;105(2):186–191. doi: 10.1016/j.amjcard.2009.09.007
  63. Friedrichs K, Adam M, Remane L, et al. Induction of atrial fibrillation by neutrophils critically depends on CD11b/CD18 integrins. PLoS One. 2014;9(2):e89307. doi: 10.1371/journal.pone.0089307
  64. Arroyo AB, de Los Reyes-García AM, Rivera-Caravaca JM, et al. MiR-146a regulates neutrophil extracellular trap formation that predicts adverse cardiovascular events in patients with atrial fibrillation. Arterioscler Thromb Vasc Biol. 2018;38(4):892–902. doi: 10.1161/ATVBAHA.117.310597
  65. Mołek P, Ząbczyk M, Malinowski KP, et al. Markers of NET formation and stroke risk in patients with atrial fibrillation: association with a prothrombotic state. Thromb Res. 2022;213:1–7. doi: 10.1016/j.thromres.2022.02.025
  66. Mołek P, Ząbczyk M, Malinowski KP, et al. Enhanced neutrophil extracellular traps formation in AF patients with dilated left atrium. Eur J Clin Invest. 2023;53(5):e13952. doi: 10.1111/eci.13952
  67. Singh J, Hunt S, Simonds S, et al. The changing epidemiology of pulmonary infection in children and adolescents with cystic fibrosis: an 18-year experience. Sci Rep. 2024;14(1):9056. doi: 10.1038/s41598-024-59658-4
  68. Okur HK, Yalcin K, Tastan C, et al. Preliminary report of in vitro and in vivo effectiveness of dornase alfa on SARS-CoV-2 infection. New Microbes New Infect. 2020;37:100756. doi: 10.1016/j.nmni.2020.100756
  69. Eghbalzadeh K, Georgi L, Louis T, et al. Compromised anti-inflammatory action of neutrophil extracellular traps in PAD4-deficient mice contributes to aggravated acute inflammation after myocardial infarction. Front Immunol. 2019;10:2313. doi: 10.3389/fimmu.2019.02313
  70. Ali M, Pulli B, Courties G, et al. Myeloperoxidase inhibition improves ventricular function and remodeling after experimental myocardial infarction. JACC Basic Transl Sci. 2016;1(7):633–643. doi: 10.1016/j.jacbts.2016.09.004
  71. Neutrophil elastase inhibition ameliorates endotoxin-induced myocardial injury accompanying degradation of cardiac capillary glycocalyx: Erratum. Shock. 2021;55(1):141. doi: 10.1097/SHK.0000000000001698
  72. Fukuta T, Okada H, Takemura G, et al. Neutrophil elastase inhibition ameliorates endotoxin-induced myocardial injury accompanying degradation of cardiac capillary glycocalyx. Shock. 2020;54(3):386–393. doi: 10.1097/SHK.0000000000001482
  73. Neeli I, Dwivedi N, Khan S, Radic M. Regulation of extracellular chromatin release from neutrophils. J Innate Immun. 2009;1(3):194–201. doi: 10.1159/000206974
  74. Shen S, Duan J, Hu J, et al. Colchicine alleviates inflammation and improves diastolic dysfunction in heart failure rats with preserved ejection fraction. Eur J Pharmacol. 2022;929:175126. doi: 10.1016/j.ejphar.2022.175126
  75. Imazio M, Nidorf M. Colchicine and the heart. Eur Heart J. 2021;42(28):2745–2760. doi: 10.1093/eurheartj/ehab221
  76. Deftereos S, Giannopoulos G, Panagopoulou V, et al. Anti-inflammatory treatment with colchicine in stable chronic heart failure: a prospective, randomized study. JACC Heart Fail. 2014;2(2):131–137. doi: 10.1016/j.jchf.2013.11.006
  77. Al-Ghoul WM, Kim MS, Fazal N, et al. Evidence for simvastatin anti-inflammatory actions based on quantitative analyses of NETosis and other inflammation/oxidation markers. Results Immunol. 2014;4:14–22. doi: 10.1016/j.rinim.2014.03.001
  78. Menegazzo L, Scattolini V, Cappellari R, et al. The antidiabetic drug metformin blunts NETosis in vitro and reduces circulating NETosis biomarkers in vivo. Acta Diabetol. 2018;55(6):593–601. doi: 10.1007/s00592-018-1129-8
  79. Soraya H, Rameshrad M, Mokarizadeh A, Garjani A. Metformin attenuates myocardial remodeling and neutrophil recruitment after myocardial infarction in rat. Bioimpacts. 2015;5(1):3–8. doi: 10.15171/bi.2015.02
  80. Dludla PV, Nyambuya TM, Johnson R, et al. Metformin and heart failure-related outcomes in patients with or without diabetes: a systematic review of randomized controlled trials. Heart Fail Rev. 2021;26(6):1437–1445. doi: 10.1007/s10741-020-09942-y
  81. Sexton TR, Wallace EL, Macaulay TE, et al. The effect of rosuvastatin on thromboinflammation in the setting of acute coronary syndrome. J Thromb Thrombolysis. 2015;39(2):186–195. doi: 10.1007/s11239-014-1142-x
  82. Andreou I, Tousoulis D, Miliou A, et al. Effects of rosuvastatin on myeloperoxidase levels in patients with chronic heart failure: a randomized placebo-controlled study. Atherosclerosis. 2010;210(1):194–198. doi: 10.1016/j.atherosclerosis.2009.10.046
  83. Novotny J, Chandraratne S, Weinberger T, et al. Histological comparison of arterial thrombi in mice and men and the influence of Cl-amidine on thrombus formation. PLoS One. 2018;13(1):e0190728. doi: 10.1371/journal.pone.0190728

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Study search algorithm

Download (341KB)

Copyright (c) 2024 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».