Heart failure and netosis: a modern view of pathophysiology and treatment methods
- Authors: Rashidova S.S.1, Morgoeva D.A.2, Tuganova A.Z.2, Albastova D.T.2, Bagaeva V.T.2, Dzaparova A.A.2, Taugazova L.A.2, Ataeva Y.V.2, Krupnova E.I.2, Shakhramanov A.E.3, Kodzaeva I.A.2, Abuev I.A.2, Aidaeva T.A.2, Abduvalieva M.S.4
-
Affiliations:
- Khasavyurt Perinatal Center
- North Ossetian State Medical Academy
- Pirogov Russian National Research Medical University
- Bashkir State Medical University
- Issue: Vol 16, No 4 (2024)
- Pages: 5-18
- Section: Reviews
- URL: https://journal-vniispk.ru/vszgmu/article/view/276647
- DOI: https://doi.org/10.17816/mechnikov636568
- ID: 276647
Cite item
Abstract
Over the past 20 years, the prevalence of chronic cardiac insufficiency in the Russian Federation has increased from 6.1 to 8.2%. Chronic, mild inflammation is also one of the main factors affecting the development and progression of chronic cardiac insufficiency. The purpose of the review is to analyze the literature data on the role of netosis in the pathogenesis of chronic cardiac insufficiency, as well as to consider new potential possibilities of chronic cardiac insufficiency therapy. As a result of the research search, 3366 publications were extracted from PubMed and 2223 publications found using Google Scholar. The search queries included the following keywords and their combinations: “netosis”, “neutrophil extracellular traps”, “NET”, “heart failure”, “myocardial infarction”, “atrial fibrillation”, “coronary heart disease”, “myocarditis”. The mechanisms of neutrophil extracellular traps formation and their contribution to the development of chronic cardiac insufficiency certainly require further study. In particular, the direct role of netosis in the development of fibrosis, hypertrophy and dysfunction of the left ventricle is still unknown. However, recent genetic and pharmacological studies show that inhibitors of myeloperoxidase, neutrophil elastase and peptidylargine deiminase can be effective, at least in chronic cardiac insufficiency in conditions of unfavorable remodeling after myocardial infarction, heart valve diseases and decompensated ventricular hypertrophy, the deterioration of which leads to the development of chronic cardiac insufficiency. These results are important for understanding the role of netosis in the pathophysiology of chronic cardiac insufficiency and developing new methods of its treatment.
Full Text
##article.viewOnOriginalSite##About the authors
Seda S. Rashidova
Khasavyurt Perinatal Center
Author for correspondence.
Email: rrstr1990@mail.ru
ORCID iD: 0009-0002-9090-0688
SPIN-code: 5824-7314
Russian Federation, Khasavyurt
Diana A. Morgoeva
North Ossetian State Medical Academy
Email: dianamorgoeva1508@mail.ru
ORCID iD: 0009-0001-3662-4638
Russian Federation, Vladikavkaz
Agunda Z. Tuganova
North Ossetian State Medical Academy
Email: agunda.tug@gmail.com
ORCID iD: 0009-0006-5152-5597
Russian Federation, Vladikavkaz
Diana T. Albastova
North Ossetian State Medical Academy
Email: dalbastova@bk.ru
ORCID iD: 0009-0008-6968-6780
Russian Federation, Vladikavkaz
Victoria T. Bagaeva
North Ossetian State Medical Academy
Email: masha.simenenkova@mail.ru
ORCID iD: 0009-0000-4869-525X
Russian Federation, Vladikavkaz
Amina A. Dzaparova
North Ossetian State Medical Academy
Email: davidkachmazov@inbox.ru
ORCID iD: 0009-0004-1290-5509
Russian Federation, Vladikavkaz
Lyudmila A. Taugazova
North Ossetian State Medical Academy
Email: taugazovala@mail.ru
ORCID iD: 0009-0006-3720-3436
Russian Federation, Vladikavkaz
Yana V. Ataeva
North Ossetian State Medical Academy
Email: ataeva.yana@bk.ru
ORCID iD: 0009-0001-5378-0704
Russian Federation, Vladikavkaz
Ekaterina I. Krupnova
North Ossetian State Medical Academy
Email: kkkrupnova@mail.ru
ORCID iD: 0009-0009-5554-6629
Russian Federation, Vladikavkaz
Arkady E. Shakhramanov
Pirogov Russian National Research Medical University
Email: arshah02@yandex.ru
ORCID iD: 0009-0000-7772-1090
Russian Federation, Moscow
Irina A. Kodzaeva
North Ossetian State Medical Academy
Email: irinakodzaeva2002@gmail.com
ORCID iD: 0009-0005-0340-2894
Russian Federation, Vladikavkaz
Islam A. Abuev
North Ossetian State Medical Academy
Email: iabuyev@list.ru
ORCID iD: 0009-0001-8576-6616
Russian Federation, Vladikavkaz
Tamila A. Aidaeva
North Ossetian State Medical Academy
Email: imtamila@mail.ru
ORCID iD: 0009-0009-3891-9657
Russian Federation, Vladikavkaz
Mizhgona Sh. Abduvalieva
Bashkir State Medical University
Email: mijgona2001@bk.ru
ORCID iD: 0009-0009-4232-2036
Russian Federation, Ufa
References
- Polyakov DS, Fomin IV, Belenkov YuN, et al. Chronic heart failure in the Russian Federation: what has changed over 20 years of follow-up? Results of the EPOCH-CHF study. Kardiologiia. 2021;61(4):4–14. EDN: WSZNFS doi: 10.18087/cardio.2021.4.n1628
- Boytsov SA. Chronic heart failure: evolution of etiology, prevalence and mortality over the past 20 years. Therapeutic Archive. 2022;94(1):5–8. EDN: HRWCBS doi: 10.26442/00403660.2022.01.201317
- Tokmachev RE, Budnevsky AV, Kravchenko AYa. The role of inflammation in the pathogenesis of chronic heart failure. Therapeutic Archive. 2016;88(9):106–110. EDN: WTDAOB doi: 10.17116/terarkh2016889106-110
- Van Tassell BW, Arena R, Biondi-Zoccai G, et al. Effects of interleukin-1 blockade with anakinra on aerobic exercise capacity in patients with heart failure and preserved ejection fraction (from the D-HART pilot study). Am J Cardiol. 2014;113(2):321–327. doi: 10.1016/j.amjcard.2013.08.047
- Van Tassell BW, Abouzaki NA, Oddi Erdle C, et al. Interleukin-1 blockade in acute decompensated heart failure: a randomized, double-blinded, placebo-controlled pilot study. J Cardiovasc Pharmacol. 2016;67(6):544–551. doi: 10.1097/FJC.0000000000000378
- Chung ES, Packer M, Lo KH, et al. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation. 2003;107(25):3133–3140. doi: 10.1161/01.CIR.0000077913.60364.D2
- Mann DL, McMurray JJ, Packer M, et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation. 2004;109(13):1594–1602. doi: 10.1161/01.CIR.0000124490.27666.B2
- Vorobjeva NV. Neutrophil extracellular traps: new aspects. Moscow university biological sciences bulletin. 2020;75(4):173–188. EDN: DGNESH doi: 10.3103/S0096392520040112
- lukhareva AE, Afonin GV, Melnikova AA, et al. The NETOsis phenomena as a functional features of peripheral blood neutrophils and its role in the pathogenesis of infections and oncological diseases: a review. Journal of Modern Oncology. 2023;24(4):487–493. EDN: XBOAIW doi: 10.26442/18151434.2022.4.201786
- Arpinati L, Shaul ME, Kaisar-Iluz N, et al. NETosis in cancer: a critical analysis of the impact of cancer on neutrophil extracellular trap (NET) release in lung cancer patients vs. mice. Cancer Immunol Immunother. 2020;69(2):199–213. doi: 10.1007/s00262-019-02474-x
- Chen T, Li Y, Sun R, et al. Receptor-mediated NETosis on neutrophils. Front Immunol. 2021;12:775267. doi: 10.3389/fimmu.2021.775267
- Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18(2):134–147. doi: 10.1038/nri.2017.105
- Lodge KM, Cowburn AS, Li W, Condliffe AM. The impact of hypoxia on neutrophil degranulation and consequences for the host. Int J Mol Sci. 2020;21(4):1183. doi: 10.3390/ijms21041183
- Thiam HR, Wong SL, Wagner DD, Waterman CM. Cellular mechanisms of NETosis. Annu Rev Cell Dev Biol. 2020;36:191–218. doi: 10.1146/annurev-cellbio-020520-111016
- Thiam HR, Wong SL, Qiu R, et al. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. Proc Natl Acad Sci USA. 2020;117(13):7326–7337. doi: 10.1073/pnas.1909546117
- Wong SL, Wagner DD. Peptidylarginine deiminase 4: a nuclear button triggering neutrophil extracellular traps in inflammatory diseases and aging. FASEB J. 2018;32(12):fj201800691R. doi: 10.1096/fj.201800691R
- Huang H, Zhang H, Onuma AE, Tsung A. Neutrophil elastase and neutrophil extracellular traps in the tumor microenvironment. Adv Exp Med Biol. 2020;1263:13–23. doi: 10.1007/978-3-030-44518-8_2
- Wei R, Li X, Wang X, et al. Trypanosoma evansi triggered neutrophil extracellular traps formation dependent on myeloperoxidase, neutrophil elastase, and extracellular signal-regulated kinase 1/2 signaling pathways. Vet Parasitol. 2021;296:109502. doi: 10.1016/j.vetpar.2021.109502
- Dudeck J, Kotrba J, Immler R, et al. Directional mast cell degranulation of tumor necrosis factor into blood vessels primes neutrophil extravasation. Immunity. 2021;54(3):468–483.e5. doi: 10.1016/j.immuni.2020.12.017
- Tang X, Wang P, Zhang R, et al. KLF2 regulates neutrophil activation and thrombosis in cardiac hypertrophy and heart failure progression. J Clin Invest. 2022;132(3):e147191. doi: 10.1172/JCI147191
- Kostin S, Giannakopoulos T, Richter M, et al. Coronary microthrombi in the failing human heart: the role of von Willebrand factor and PECAM-1. Mol Cell Biochem. 2024;479(12):3437–3446. doi: 10.1007/s11010-024-04942-0
- Hein S, Arnon E, Kostin S, et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation. 2003;107(7):984–991. doi: 10.1161/01.cir.0000051865.66123.b7
- Marques FZ, Prestes PR, Byars SG, et al. Experimental and human evidence for lipocalin-2 (neutrophil gelatinase-associated lipocalin [NGAL]) in the development of cardiac hypertrophy and heart failure. J Am Heart Assoc. 2017;6(6):e005971. doi: 10.1161/JAHA.117.005971
- Li RHL, Fabella A, Nguyen N, et al. Circulating neutrophil extracellular traps in cats with hypertrophic cardiomyopathy and cardiogenic arterial thromboembolism. J Vet Intern Med. 2023;37(2):490–502. doi: 10.1111/jvim.16676
- Wang Y, Sano S, Oshima K, et al. Wnt5a-mediated neutrophil recruitment has an obligatory role in pressure overload-induced cardiac dysfunction. Circulation. 2019;140(6):487–499. doi: 10.1161/CIRCULATIONAHA.118.038820
- Ng LL, Pathik B, Loke IW, et al. Myeloperoxidase and C-reactive protein augment the specificity of B-type natriuretic peptide in community screening for systolic heart failure. Am Heart J. 2006;152(1):94–101. doi: 10.1016/j.ahj.2005.09.020
- Tang WH, Shrestha K, Troughton RW, et al. Integrating plasma high-sensitivity C-reactive protein and myeloperoxidase for risk prediction in chronic systolic heart failure. Congest Heart Fail. 2011;17(3):105–109. doi: 10.1111/j.1751-7133.2011.00221.x
- Hage C, Michaëlsson E, Kull B, et al. Myeloperoxidase and related biomarkers are suggestive footprints of endothelial microvascular inflammation in HFpEF patients. ESC Heart Fail. 2020;7(4):1534–1546. doi: 10.1002/ehf2.12700
- Yndestad A, Landro L, Ueland T, et al. Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical and experimental heart failure. Eur Heart J. 2009;30(10):1229–1236. doi: 10.1093/eurheartj/ehp088
- Nelson MD, Victor RG, Szczepaniak EW, et al. Cardiac steatosis and left ventricular hypertrophy in patients with generalized lipodystrophy as determined by magnetic resonance spectroscopy and imaging. Am J Cardiol. 2013;112(7):1019–1024. doi: 10.1016/j.amjcard.2013.05.036
- Bai B, Yang W, Fu Y, et al. Seipin knockout mice develop heart failure with preserved ejection fraction. JACC Basic Transl Sci. 2019;4(8):924–937. doi: 10.1016/j.jacbts.2019.07.008
- Savchenko AS, Borissoff JI, Martinod K, et al. VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice. Blood. 2014; 123(1):141–148. doi: 10.1182/blood-2013-07-514992
- Du M, Yang W, Schmull S, et al. Inhibition of peptidyl arginine deiminase-4 protects against myocardial infarction induced cardiac dysfunction. Int Immunopharmacol. 2020;78:106055. doi: 10.1016/j.intimp.2019.106055
- Martinod K, Witsch T, Erpenbeck L, et al. Peptidylarginine deiminase 4 promotes age-related organ fibrosis. J Exp Med. 2017;214(2):439–458. doi: 10.1084/jem.20160530
- Du M, Yang L, Gu J, et al. Inhibition of peptidyl arginine deiminase-4 prevents renal ischemia-reperfusion-induced remote lung injury. Mediators Inflamm. 2020;2020:1724206. doi: 10.1155/2020/1724206
- Ijichi T, Sundararaman N, Martin TG, et al. Peptidyl arginine deiminase inhibition alleviates angiotensin II-induced fibrosis. Am J Transl Res. 2023;15(7):4558–4572.
- Ivey AD, Matthew Fagan B, Murthy P, et al. Chloroquine reduces neutrophil extracellular trap (NET) formation through inhibition of peptidyl arginine deiminase 4 (PAD4). Clin Exp Immunol. 2023;211(3):239–247. doi: 10.1093/cei/uxad005
- Zeng JH, Liu YX, Yuan J, et al. First case of COVID-19 complicated with fulminant myocarditis: a case report and insights. Infection. 2020;48(5):773–777. doi: 10.1007/s15010-020-01424-5
- Cuomo V, Esposito R, Santoro C. Fulminant myocarditis in the time of coronavirus. Eur Heart J. 2020;41(22):2121. doi: 10.1093/eurheartj/ehaa354
- Hu H, Ma F, Wei X, Fang Y. Coronavirus fulminant myocarditis treated with glucocorticoid and human immunoglobulin. Eur Heart J. 2021;42(2):206. doi: 10.1093/eurheartj/ehaa190
- Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N Engl J Med. 2020;383(2):120–128. doi: 10.1056/NEJMoa2015432
- Guagliumi G, Sonzogni A, Pescetelli I, et al. Microthrombi and ST-Segment-Elevation Myocardial Infarction in COVID-19. Circulation. 2020;142(8):804–809. doi: 10.1161/CIRCULATIONAHA.120.049294
- Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020;217(6):e20200652. doi: 10.1084/jem.20200652
- Johnson JE, McGuone D, Xu ML, et al. Coronavirus disease 2019 (COVID-19) coronary vascular thrombosis: correlation with neutrophil but not endothelial activation. Am J Pathol. 2022;192(1):112–120. doi: 10.1016/j.ajpath.2021.09.004
- Middleton EA, He XY, Denorme F, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020;136(10):1169–1179. doi: 10.1182/blood.2020007008
- Maisch B, Pankuweit S. Inflammatory dilated cardiomyopathy: Etiology and clinical management. Herz. 2020;45(3):221–229. doi: 10.1007/s00059-020-04900-8
- Rivadeneyra L, Charó N, Kviatcovsky D, et al. Role of neutrophils in CVB3 infection and viral myocarditis. J Mol Cell Cardiol. 2018;125:149–161. doi: 10.1016/j.yjmcc.2018.08.029
- Müller I, Vogl T, Pappritz K, et al. Pathogenic role of the damage-associated molecular patterns S100A8 and S100A9 in coxsackievirus B3-induced myocarditis. Circ Heart Fail. 2017;10(11):e004125. doi: 10.1161/CIRCHEARTFAILURE.117.004125
- Zhou Y, Hann J, Schenten V, et al. Role of S100A8/A9 for cytokine secretion, revealed in neutrophils derived from ER-Hoxb8 progenitors. Int J Mol Sci. 2021;22(16):8845. doi: 10.3390/ijms22168845
- Del Buono MG, Moroni F, Montone RA, et al. Ischemic cardiomyopathy and heart failure after acute myocardial infarction. Curr Cardiol Rep. 2022;24(10):1505–1515. doi: 10.1007/s11886-022-01766-6
- Liu X, Fu Y, Wang J, et al. β-Conglycinin induces the formation of neutrophil extracellular traps dependent on NADPH oxidase-derived ROS, PAD4, ERK1/2 and p38 signaling pathways in mice. Food Funct. 2021;12(1):154–161. doi: 10.1039/d0fo02337j
- Haritha VH, George A, Shaji BV, Anie Y. NET-associated citrullinated histones promote LDL aggregation and foam cell formation in vitro. Exp Cell Res. 2020;396(2):112320. doi: 10.1016/j.yexcr.2020.112320
- Kelesidis T, Roberts CK, Huynh D, et al. A high throughput biochemical fluorometric method for measuring lipid peroxidation in HDL. PLoS One. 2014;9(11):e111716. doi: 10.1371/journal.pone.0111716
- Jaehn P, Sasko B, Holmberg C, et al. Levels of high-density lipoprotein lipid peroxidation according to spatial socioeconomic deprivation and rurality among patients with coronary artery disease. Eur J Prev Cardiol. 2022;29(15):e343–e346. doi: 10.1093/eurjpc/zwac068
- Yazdandoust S, Parizadeh SMR, Ghayour-Mobarhan M, et al. High-density lipoprotein lipid peroxidation as a diagnostics biomarker in coronary artery disease. Biofactors. 2022;48(3):634–642. doi: 10.1002/biof.1819
- Pagonas N, Mueller R, Weiland L, et al. Oxidized high-density lipoprotein associates with atrial fibrillation. Heart Rhythm. 2024;21(4):362–369. doi: 10.1016/j.hrthm.2023.11.024
- Itabe H, Sawada N, Makiyama T, Obama T. Structure and dynamics of oxidized lipoproteins in vivo: roles of high-density lipoprotein. Biomedicines. 2021;9(6):655. doi: 10.3390/biomedicines9060655
- Sawada N, Obama T, Koba S, et al. Circulating oxidized LDL, increased in patients with acute myocardial infarction, is accompanied by heavily modified HDL. J Lipid Res. 2020;61(6):816–829. doi: 10.1194/jlr.RA119000312
- Ru D, Zhiqing H, Lin Z, et al. Oxidized high-density lipoprotein accelerates atherosclerosis progression by inducing the imbalance between treg and teff in LDLR knockout mice. APMIS. 2015;123(5):410–421. doi: 10.1111/apm.12362
- Carlisle MA, Fudim M, DeVore AD, Piccini JP. Heart failure and atrial fibrillation, like fire and fury. JACC Heart Fail. 2019;7(6):447–456. doi: 10.1016/j.jchf.2019.03.005
- Rudolph V, Andrié RP, Rudolph TK, et al. Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation. Nat Med. 2010;16(4):470–474. doi: 10.1038/nm.2124
- Gibson PH, Cuthbertson BH, Croal BL, et al. Usefulness of neutrophil/lymphocyte ratio as predictor of new-onset atrial fibrillation after coronary artery bypass grafting. Am J Cardiol. 2010;105(2):186–191. doi: 10.1016/j.amjcard.2009.09.007
- Friedrichs K, Adam M, Remane L, et al. Induction of atrial fibrillation by neutrophils critically depends on CD11b/CD18 integrins. PLoS One. 2014;9(2):e89307. doi: 10.1371/journal.pone.0089307
- Arroyo AB, de Los Reyes-García AM, Rivera-Caravaca JM, et al. MiR-146a regulates neutrophil extracellular trap formation that predicts adverse cardiovascular events in patients with atrial fibrillation. Arterioscler Thromb Vasc Biol. 2018;38(4):892–902. doi: 10.1161/ATVBAHA.117.310597
- Mołek P, Ząbczyk M, Malinowski KP, et al. Markers of NET formation and stroke risk in patients with atrial fibrillation: association with a prothrombotic state. Thromb Res. 2022;213:1–7. doi: 10.1016/j.thromres.2022.02.025
- Mołek P, Ząbczyk M, Malinowski KP, et al. Enhanced neutrophil extracellular traps formation in AF patients with dilated left atrium. Eur J Clin Invest. 2023;53(5):e13952. doi: 10.1111/eci.13952
- Singh J, Hunt S, Simonds S, et al. The changing epidemiology of pulmonary infection in children and adolescents with cystic fibrosis: an 18-year experience. Sci Rep. 2024;14(1):9056. doi: 10.1038/s41598-024-59658-4
- Okur HK, Yalcin K, Tastan C, et al. Preliminary report of in vitro and in vivo effectiveness of dornase alfa on SARS-CoV-2 infection. New Microbes New Infect. 2020;37:100756. doi: 10.1016/j.nmni.2020.100756
- Eghbalzadeh K, Georgi L, Louis T, et al. Compromised anti-inflammatory action of neutrophil extracellular traps in PAD4-deficient mice contributes to aggravated acute inflammation after myocardial infarction. Front Immunol. 2019;10:2313. doi: 10.3389/fimmu.2019.02313
- Ali M, Pulli B, Courties G, et al. Myeloperoxidase inhibition improves ventricular function and remodeling after experimental myocardial infarction. JACC Basic Transl Sci. 2016;1(7):633–643. doi: 10.1016/j.jacbts.2016.09.004
- Neutrophil elastase inhibition ameliorates endotoxin-induced myocardial injury accompanying degradation of cardiac capillary glycocalyx: Erratum. Shock. 2021;55(1):141. doi: 10.1097/SHK.0000000000001698
- Fukuta T, Okada H, Takemura G, et al. Neutrophil elastase inhibition ameliorates endotoxin-induced myocardial injury accompanying degradation of cardiac capillary glycocalyx. Shock. 2020;54(3):386–393. doi: 10.1097/SHK.0000000000001482
- Neeli I, Dwivedi N, Khan S, Radic M. Regulation of extracellular chromatin release from neutrophils. J Innate Immun. 2009;1(3):194–201. doi: 10.1159/000206974
- Shen S, Duan J, Hu J, et al. Colchicine alleviates inflammation and improves diastolic dysfunction in heart failure rats with preserved ejection fraction. Eur J Pharmacol. 2022;929:175126. doi: 10.1016/j.ejphar.2022.175126
- Imazio M, Nidorf M. Colchicine and the heart. Eur Heart J. 2021;42(28):2745–2760. doi: 10.1093/eurheartj/ehab221
- Deftereos S, Giannopoulos G, Panagopoulou V, et al. Anti-inflammatory treatment with colchicine in stable chronic heart failure: a prospective, randomized study. JACC Heart Fail. 2014;2(2):131–137. doi: 10.1016/j.jchf.2013.11.006
- Al-Ghoul WM, Kim MS, Fazal N, et al. Evidence for simvastatin anti-inflammatory actions based on quantitative analyses of NETosis and other inflammation/oxidation markers. Results Immunol. 2014;4:14–22. doi: 10.1016/j.rinim.2014.03.001
- Menegazzo L, Scattolini V, Cappellari R, et al. The antidiabetic drug metformin blunts NETosis in vitro and reduces circulating NETosis biomarkers in vivo. Acta Diabetol. 2018;55(6):593–601. doi: 10.1007/s00592-018-1129-8
- Soraya H, Rameshrad M, Mokarizadeh A, Garjani A. Metformin attenuates myocardial remodeling and neutrophil recruitment after myocardial infarction in rat. Bioimpacts. 2015;5(1):3–8. doi: 10.15171/bi.2015.02
- Dludla PV, Nyambuya TM, Johnson R, et al. Metformin and heart failure-related outcomes in patients with or without diabetes: a systematic review of randomized controlled trials. Heart Fail Rev. 2021;26(6):1437–1445. doi: 10.1007/s10741-020-09942-y
- Sexton TR, Wallace EL, Macaulay TE, et al. The effect of rosuvastatin on thromboinflammation in the setting of acute coronary syndrome. J Thromb Thrombolysis. 2015;39(2):186–195. doi: 10.1007/s11239-014-1142-x
- Andreou I, Tousoulis D, Miliou A, et al. Effects of rosuvastatin on myeloperoxidase levels in patients with chronic heart failure: a randomized placebo-controlled study. Atherosclerosis. 2010;210(1):194–198. doi: 10.1016/j.atherosclerosis.2009.10.046
- Novotny J, Chandraratne S, Weinberger T, et al. Histological comparison of arterial thrombi in mice and men and the influence of Cl-amidine on thrombus formation. PLoS One. 2018;13(1):e0190728. doi: 10.1371/journal.pone.0190728
Supplementary files
