Radioresistance of Malignant Neoplasms: Current Understanding of the Role of microRNAs in Overcoming it

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Radiation therapy is one of the most common cancer treatment methods, with approximately 50–60% of cancer patients receiving it. Despite the outstanding advances in the field of its application, especially once technology is concerned, significant obstacles still need to be overcome. The main problems of radiation therapy include tumor resistance and damage to healthy tissues, which leads to negative consequences and inadequate tumor control. Manipulations with the microRNA family is considered to be a promising approach for overcoming these limitations.

The purpose of the review is to analyze the literature data on the role of microRNAs in the regulation of resistance to radiation therapy in human tumors, as well as to evaluate the possibility of manipulations with microRNAs to overcome radioresistance. The evaluation of the articles was carried out in accordance with PRISMA guidelines. The search retrieved 2153 publications. The search queries included the following keywords and their combinations: “microRNA”, “cancer”, “oncological diseases”, “malignant neoplasms”, “radiation therapy”, “radioresistance”. The analysis of the literature data shows that microRNAs will play an important role in radiation oncology in the future. The use of microRNAs is likely to be the basis for the development of specialized therapies that will increase radiosensitivity, as well as for predicting the response to radiation therapy. Early studies have shown that microRNAs can be used as biomarkers for predicting and monitoring therapy, providing a more accurate and personalized approach to patient management.

作者简介

Emina Gamidova

Rostov State Medical University

编辑信件的主要联系方式.
Email: neurosurg@bk.ru
ORCID iD: 0009-0009-6383-6271
俄罗斯联邦, Rostov-on-Don

Anastasiia Ushakova

Kuban State Medical University

Email: ushakowa.nastya2001@gmail.com
ORCID iD: 0009-0000-1638-3032
俄罗斯联邦, Krasnodar

Olga Shaposhnikova

Russian State Social University

Email: logeya@ya.ru
ORCID iD: 0009-0007-0385-7965
俄罗斯联邦, Moscow

Evgeniy Rogochiy

Rostov State Medical University

Email: evgeniy_rogochiy@mail.ru
ORCID iD: 0009-0000-2069-1548
俄罗斯联邦, Rostov-on-Don

Anna Bryukhno

Kuban State Medical University

Email: anna.bryukhno@mail.ru
ORCID iD: 0009-0000-8986-7169
俄罗斯联邦, Krasnodar

Valeria Karapetova

Rostov State Medical University

Email: karapetova.valeria@yandex.ru
ORCID iD: 0009-0004-7409-1109
俄罗斯联邦, Rostov-on-Don

Esmira Mamedova

Samara State Medical University

Email: esmirammv0307@yandex.ru
ORCID iD: 0009-0009-2636-1422
俄罗斯联邦, Samara

Firuza Buranbaeva

Bashkir State Medical University

Email: mingazhevafiruza@mail.ru
ORCID iD: 0009-0006-7889-6574
俄罗斯联邦, Ufa

Kamilia Aitkulova

Orenburg Republican Hospital

Email: tayguzina@mail.ru
ORCID iD: 0009-0007-4655-6476

MD

俄罗斯联邦, Orenburg

Anastasiya Logvinenko

Kuban State Medical University

Email: logvinenko-nastasya@mail.ru
ORCID iD: 0009-0000-7218-8098
俄罗斯联邦, Krasnodar

Yulia Mironenko

Rostov State Medical University

Email: yulia.mironenko.22.09.17@gmail.com
ORCID iD: 0009-0009-6876-6313
俄罗斯联邦, Rostov-on-Don

Aelita Bdoyan

Rostov State Medical University

Email: aelitabdoyan@mail.ru
ORCID iD: 0009-0005-8290-7910
俄罗斯联邦, Rostov-on-Don

Darina Chimidova

Rostov State Medical University

Email: dgretly@mail.ru
ORCID iD: 0009-0006-3245-5976
俄罗斯联邦, Rostov-on-Don

Valentina Fursova

Rostov State Medical University

Email: valyakane@gmail.com
ORCID iD: 0009-0007-1088-2843
俄罗斯联邦, Rostov-on-Don

参考

  1. Kaprin AD, Bojko AV, Gevorkov AR, Bolotina LV. The current state of radiotherapy in patients with oropharyngeal squamous cell carcinoma. A radiation therapist’s view. P.A. Herzen Journal of Oncology. 2017;6(4):4–8. EDN: ZFCHEL doi: 10.17116/onkolog2017644-8
  2. Zhang S, Zeng N, Yang J, et al. Advancements of radiotherapy for recurrent head and neck cancer in modern era. Radiat Oncol. 2023;18(1):166. doi: 10.1186/s13014-023-02342-0
  3. Olivares-Urbano MA, Griñán-Lisón C, Marchal JA, Núñez MI. CSC radioresistance: a therapeutic challenge to improve radiotherapy effectiveness in cancer. Cells. 2020;9(7):1651. doi: 10.3390/cells9071651
  4. Senchukova MA, Makarova EV, Kalinin EA, et al. Modern concepts on the role of hypoxia in the development of tumor radioresistance. Siberian journal of oncology. 2020;19(6):141–147. EDN: FKZAJO doi: 10.21294/1814-4861-2020-19-6-141-147
  5. Omelchuk EP, Kutilin DS, Dimitriadi SN, et al. Molecular genetic aspects of prostate cancer radioresistance. Bulletin of Siberian Medicine. 2021;20(3):182–192. EDN: XWCPQK doi: 10.20538/1682-0363-2021-3-182-192
  6. Janiak MK, Pocięgiel M, Welsh JS. Time to rejuvenate ultra-low dose whole-body radiotherapy of cancer. Crit Rev Oncol Hematol. 2021;160:103286. doi: 10.1016/j.critrevonc.2021.103286
  7. Kuznetsov KO, Sharipova EF, Nizayeva AS, et al. The role of microRNAs in normal condition and in endometrial pathology. Russian Bulletin of Obstetrician-Gynecologist. 2023;23(4):27–34. EDN: OZVRZX doi: 10.17116/rosakush20232304127
  8. Zhu L, Wang M, Chen N, et al. Mechanisms of microRNA action in rectal cancer radiotherapy. Chin Med J (Engl). 2022;135(17):2017–2025. doi: 10.1097/CM9.0000000000002139
  9. Halikov AA, Kildyushov EM, Kuznetsov KO, et al. Use of microRNA to estimate time science death: review. Russian Journal of Forensic Medicine. 2021;7(3):132–138. EDN: FHYOZZ doi: 10.17816/fm412
  10. Yu L, Yang Y, Hou J, et al. MicroRNA-144 affects radiotherapy sensitivity by promoting proliferation, migration and invasion of breast cancer cells. Oncol Rep. 2015;34(4):1845–1852. doi: 10.3892/or.2015.4173
  11. Yousefi M, Bahrami T, Salmaninejad A, et al. Lung cancer-associated brain metastasis: Molecular mechanisms and therapeutic options. Cell Oncol (Dordr). 2017;40(5):419–441. doi: 10.1007/s13402-017-0345-5
  12. Sun T, Yin YF, Jin HG, et al. Exosomal microRNA-19b targets FBXW7 to promote colorectal cancer stem cell stemness and induce resistance to radiotherapy. Kaohsiung J Med Sci. 2022;38(2):108–119. doi: 10.1002/kjm2.12449
  13. Petrović N, Stanojković TP, Nikitović M. MicroRNAs in prostate cancer following radiotherapy: towards predicting response to radiation treatment. Curr Med Chem. 2022;29(9):1543–1560. doi: 10.2174/0929867328666210804085135
  14. Pathak S, Meng WJ, Sriramulu S, et al. Association of MicroRNA-652 expression with radiation response of colorectal cancer: a study from rectal cancer patients in a swedish trial of preoperative radiotherapy. Curr Gene Ther. 2023;23(5):356–367. doi: 10.2174/1566523223666230418111613
  15. Mueller AK, Lindner K, Hummel R, et al. MicroRNAs and their impact on radiotherapy for cancer. Radiat Res. 2016;185(6):668–677. doi: 10.1667/RR14370.1
  16. Sha H, Gan Y, Xu F, et al. MicroRNA-381 in human cancer: Its involvement in tumour biology and clinical applications potential. J Cell Mol Med. 2022;26(4):977–989. doi: 10.1111/jcmm.17161
  17. Mirzaei S, Zarrabi A, Asnaf SE, et al. The role of microRNA-338-3p in cancer: growth, invasion, chemoresistance, and mediators. Life Sci. 2021;268:119005. doi: 10.1016/j.lfs.2020.119005
  18. Porrazzo A, Cassandri M, D’Alessandro A, et al. DNA repair in tumor radioresistance: insights from fruit flies genetics. Cell Oncol (Dordr). 2024;47(3):717–732. doi: 10.1007/s13402-023-00906-6
  19. Cipolla GA. A non-canonical landscape of the microRNA system. Front Genet. 2014;5:337. doi: 10.3389/fgene.2014.00337
  20. Seok H, Ham J, Jang ES, Chi SW. MicroRNA target recognition: insights from transcriptome-wide non-canonical interactions. Mol Cells. 2016;39(5):375–381. doi: 10.14348/molcells.2016.0013
  21. Wang ZH, Liu T. MicroRNA21 meets neuronal TLR8: non-canonical functions of microrna in neuropathic pain. Neurosci Bull. 2019;35(5):949–952. doi: 10.1007/s12264-019-00366-9
  22. Beylerli OA, Gareev IF, Beylerli AT. Micro RNAS as new players in control of hypothalamic functions. Creative surgery and oncology. 2019;9(2):138–143. EDN: WVZNJW doi: 10.24060/2076-3093-2019-9-2-138-143
  23. Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141(4):1202–1207. doi: 10.1016/j.jaci.2017.08.034
  24. Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Vet Pathol. 2014;51(4):759–774. doi: 10.1177/0300985813502820
  25. Miroshnichenko SK, Patutina OA, Zenkova MA. miRNA-targeting oligonucleotide constructs with various mechanisms of action as effective inhibitors of carcinogenesis. Biological Products. Prevention, Diagnosis, Treatment. 2024;24(2):140–156. EDN: EJIPIE doi: 10.30895/2221-996X-2024-24-2-140-156
  26. Ho PTB, Clark IM, Le LTT. MicroRNA-based diagnosis and therapy. Int J Mol Sci. 2022;23(13):7167. doi: 10.3390/ijms23137167
  27. Kabzinski J, Maczynska M, Majsterek I. MicroRNA as a novel biomarker in the diagnosis of head and neck cancer. Biomolecules. 2021;11(6):844. doi: 10.3390/biom11060844
  28. Gurbuz N, Ozpolat B. MicroRNA-based targeted therapeutics in pancreatic cancer. Anticancer Res. 2019;39(2):529–532. doi: 10.21873/anticanres.13144
  29. Gao L, Zheng H, Cai Q, Wei L. Autophagy and tumour radiotherapy. Adv Exp Med Biol. 2020;1207:375–387. doi: 10.1007/978-981-15-4272-5_25
  30. Citrin DE. Recent developments in radiotherapy. N Engl J Med. 2017;377(11):1065–1075. doi: 10.1056/NEJMra1608986
  31. Naumenko NV, Petruseva IO, Lavrik OI. Bulky adducts in clustered DNA lesions: causes of resistance to the NER system. Acta Naturae. 2023;14(4):38–49. EDN: KVZERW doi: 10.32607/actanaturae.11741
  32. Belyashova AS, Galkin MV, Antipina NA, et al. Cell cultures in assessing radioresistance of glioblastomas. Burdenko’s Journal of Neurosurgery. 2022;86(5):126-132. EDN: YDUWNQ doi: 10.17116/neiro202286051126
  33. Allen C, Her S, Jaffray DA. Radiotherapy for cancer: present and future. Adv Drug Deliv Rev. 2017;109:1–2. doi: 10.1016/j.addr.2017.01.004
  34. Santivasi WL, Xia F. Ionizing radiation-induced DNA damage, response, and repair. Antioxid Redox Signal. 2014;21(2):251–259. doi: 10.1089/ars.2013.5668
  35. Pan D, Du YR, Li R, et al. SET8 Inhibition potentiates radiotherapy by suppressing DNA damage repair in carcinomas. Biomed Environ Sci. 2022;35(3):194–205. doi: 10.3967/bes2022.028
  36. Jiang Y, Liu Y, Hu H. Studies on DNA damage repair and precision radiotherapy for breast cancer. Adv Exp Med Biol. 2017;1026:105–123. doi: 10.1007/978-981-10-6020-5_5
  37. Goldstein M, Kastan MB. The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu Rev Med. 2015;66:129–143. doi: 10.1146/annurev-med-081313-121208
  38. Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther. 2020;5(1):60. doi: 10.1038/s41392-020-0150-x
  39. Xu T, Ma Q, Li Y, et al. A small molecule inhibitor of the UBE2F-CRL5 axis induces apoptosis and radiosensitization in lung cancer. Signal Transduct Target Ther. 2022;7(1):354. doi: 10.1038/s41392-022-01182-w
  40. Wang J, Wang Z, Sun Y, Liu D. Bryostatin-1 inhibits cell proliferation of hepatocarcinoma and induces cell cycle arrest by activation of GSK3β. Biochem Biophys Res Commun. 2019;512(3):473–478. doi: 10.1016/j.bbrc.2019.03.014
  41. Vakili-Samiani S, Khanghah OJ, Gholipour E, et al. Cell cycle involvement in cancer therapy; WEE1 kinase, a potential target as therapeutic strategy. Mutat Res. 2022;824:111776. doi: 10.1016/j.mrfmmm.2022.111776
  42. Li MY, Liu JQ, Chen DP, et al. Radiotherapy induces cell cycle arrest and cell apoptosis in nasopharyngeal carcinoma via the ATM and Smad pathways. Cancer Biol Ther. 2017;18(9):681–693. doi: 10.1080/15384047.2017.1360442
  43. Lin S, Yan Y, Liu Y, et al. Sensitisation of human lung adenocarcinoma A549 cells to radiotherapy by Nimotuzumab is associated with enhanced apoptosis and cell cycle arrest in the G2/M phase. Cell Biol Int. 2015;39(2):146–151. doi: 10.1002/cbin.10342
  44. Kashyap D, Garg VK, Goel N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv Protein Chem Struct Biol. 2021;125:73–120. doi: 10.1016/bs.apcsb.2021.01.003
  45. Bramanti S, Mannina D, Chiappella A, et al. Role of bridging RT in relapsed/refractory diffuse large B-cell lymphoma undergoing CAR-T therapy: a multicenter study. Bone Marrow Transplant. 2024. doi: 10.1038/s41409-024-02427-8
  46. Fulda S. Targeting IAP proteins in combination with radiotherapy. Radiat Oncol. 2015;10:105. doi: 10.1186/s13014-015-0399-3
  47. Prasanna PGS, Ahmed MM, Hong JA, Coleman CN. Best practices and novel approaches for the preclinical development of drug-radiotherapy combinations for cancer treatment. Lancet Oncol. 2024;25(10):e501–e511. doi: 10.1016/S1470-2045(24)00199-2
  48. Toropovsky AN, Pavlova ON, Viktorov DA, Nikitin AG. Molecular-genetic mechanisms of the signal cascade RAS-RAF-MEK-ERK associated with the development of the tumor process and the purpose of targeted drugs for colorectal cancer. Bulletin of the Medical Institute REAVIZ: rehabilitation, doctor and health. 2021;(4(52)):25–35. EDN: WTKZRN doi: 10.20340/vmi-rvz.2021.4.MORPH.3
  49. Oleinik EK, Shibaev MI, Ignatiev KS, et al. Tumor microenvironment: the formation of the immune profile. Medical Immunology (Russia). 2020;22(2):207–220. EDN: QEZBBN doi: 10.15789/1563-0625-TMT-1909
  50. Ebbing EA, van der Zalm AP, Steins A, et al. Stromal-derived interleukin 6 drives epithelial-to-mesenchymal transition and therapy resistance in esophageal adenocarcinoma. Proc Natl Acad Sci U S A. 2019;116(6):2237–2242. doi: 10.1073/pnas.1820459116
  51. Krisnawan VE, Stanley JA, Schwarz JK, DeNardo DG. Tumor microenvironment as a regulator of radiation therapy: new insights into stromal-mediated radioresistance. Cancers (Basel). 2020;12(10):2916. doi: 10.3390/cancers12102916
  52. Oleynikova NА, Danilova NV, Mikhailov IA, et al. Cancer-associated fibroblasts and their significance in tumor progression. Russian Journal of Archive of Pathology. 2020;82(1):68-77. EDN: RAFMFM doi: 10.17116/patol20208201168
  53. Ansems M, Span PN. The tumor microenvironment and radiotherapy response; a central role for cancer-associated fibroblasts. Clin Transl Radiat Oncol. 2020;22:90–97. doi: 10.1016/j.ctro.2020.04.001
  54. Piper M, Mueller AC, Karam SD. The interplay between cancer associated fibroblasts and immune cells in the context of radiation therapy. Mol Carcinog. 2020;59(7):754–765. doi: 10.1002/mc.23205
  55. Walcher L, Kistenmacher AK, Suo H, et al. Cancer stem cells-origins and biomarkers: perspectives for targeted personalized therapies. Front Immunol. 2020;11:1280. doi: 10.3389/fimmu.2020.01280
  56. Taeb S, Ashrafizadeh M, Zarrabi A, et al. Role of tumor microenvironment in cancer stem cells resistance to radiotherapy. Curr Cancer Drug Targets. 2022;22(1):18–30. doi: 10.2174/1568009622666211224154952
  57. Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell (CSC) resistance drivers. Life Sci. 2019;234:116781. doi: 10.1016/j.lfs.2019.116781
  58. Dandawate PR, Subramaniam D, Jensen RA, Anant S. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy. Semin Cancer Biol. 2016;40-41:192–208. doi: 10.1016/j.semcancer.2016.09.001
  59. Ahmed SU, Carruthers R, Gilmour L, et al. Selective inhibition of parallel DNA damage response pathways optimizes radiosensitization of glioblastoma stem-like cells. Cancer Res. 2015;75(20):4416–4428. doi: 10.1158/0008-5472.CAN-14-3790
  60. Carruthers RD, Ahmed SU, Ramachandran S, et al. Replication stress drives constitutive activation of the DNA damage response and radioresistance in glioblastoma stem-like cells. Cancer Res. 2018;78(17):5060–5071. doi: 10.1158/0008-5472.CAN-18-0569
  61. Venere M, Hamerlik P, Wu Q, et al. Therapeutic targeting of constitutive PARP activation compromises stem cell phenotype and survival of glioblastoma-initiating cells. Cell Death Differ. 2014;21(2):258–269. doi: 10.1038/cdd.2013.136
  62. Wang Y, Xu H, Liu T, et al. Temporal DNA-PK activation drives genomic instability and therapy resistance in glioma stem cells. JCI Insight. 2018;3(3):e98096. doi: 10.1172/jci.insight.98096
  63. Timme CR, Rath BH, O’Neill JW, et al. The DNA-PK inhibitor VX-984 enhances the radiosensitivity of glioblastoma cells grown in vitro and as orthotopic xenografts. Mol Cancer Ther. 2018;17(6):1207–1216. doi: 10.1158/1535-7163.MCT-17-1267
  64. Gomez-Roman N, Amoah-Buahin E, Watts C, Chalmers AJ. Abrogation of radioresistance in glioblastoma stem-like cells by inhibition of ATM kinase. Mol Oncol. 2015;9(1):192–203. doi: 10.1016/j.molonc.2014.08.003
  65. Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–760. doi: 10.1038/nature05236
  66. Zhang P, Wei Y, Wang L, et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol. 2014;16(9):864–875. doi: 10.1038/ncb3013
  67. Tachon G, Cortes U, Guichet PO, et al. Cell cycle changes after glioblastoma stem cell irradiation: the major role of RAD51. Int J Mol Sci. 2018;19(10):3018. doi: 10.3390/ijms19103018
  68. Mir SE, De Witt Hamer PC, Krawczyk PM, et al. In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell. 2010;18(3):244–57. doi: 10.1016/j.ccr.2010.08.011
  69. Zhang M, Atkinson RL, Rosen JM. Selective targeting of radiation-resistant tumor-initiating cells. Proc Natl Acad Sci U S A. 2010;107(8):3522–3527. doi: 10.1073/pnas.0910179107
  70. Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci. 2016;73(2):377–392. doi: 10.1007/s00018-015-2070-4
  71. Shimura T, Noma N, Sano Y, et al. AKT-mediated enhanced aerobic glycolysis causes acquired radioresistance by human tumor cells. Radiother Oncol. 2014;112(2):302–307. doi: 10.1016/j.radonc.2014.07.015
  72. Wu Y, Song Y, Wang R, Wang T. Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer. 2023;22(1):96. doi: 10.1186/s12943-023-01801-2
  73. Yang X, Lu Y, Hang J, et al. Lactate-modulated immunosuppression of myeloid-derived suppressor cells contributes to the radioresistance of pancreatic cancer. Cancer Immunol Res. 2020;8(11):1440–1451. doi: 10.1158/2326-6066.CIR-20-0111
  74. Fang Y, Zhan Y, Xie Y, et al. Integration of glucose and cardiolipin anabolism confers radiation resistance of HCC. Hepatology. 2022;75(6):1386–1401. doi: 10.1002/hep.32177
  75. Bacci M, Lorito N, Smiriglia A, Morandi A. Fat and furious: lipid metabolism in antitumoral therapy response and resistance. Trends Cancer. 2021;7(3):198–213. doi: 10.1016/j.trecan.2020.10.004
  76. Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–128. doi: 10.1126/science.aaa1348
  77. Romaszko AM, Doboszyńska A. Multiple primary lung cancer: A literature review. Adv Clin Exp Med. 2018;27(5):725–730. doi: 10.17219/acem/68631
  78. Lawler J. Counter regulation of tumor angiogenesis by vascular endothelial growth factor and thrombospondin-1. Semin Cancer Biol. 2022;86(2):126–135. doi: 10.1016/j.semcancer.2022.09.006
  79. Anauate AC, Leal MF, Calcagno DQ, et al. The complex network between MYC oncogene and micrornas in gastric cancer: an overview. Int J Mol Sci. 2020;21(5):1782. doi: 10.3390/ijms21051782
  80. Hossain A, Kuo MT, Saunders GF. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol. 2006;26(21):8191–8201. doi: 10.1128/MCB.00242-06
  81. Yu Z, Wang C, Wang M, et al. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol. 2008;182(3):509–517. doi: 10.1083/jcb.200801079
  82. Earle JS, Luthra R, Romans A, et al. Association of microRNA expression with microsatellite instability status in colorectal adenocarcinoma. J Mol Diagn. 2010;12(4):433–440. doi: 10.2353/jmoldx.2010.090154
  83. Gottardo F, Liu CG, Ferracin M, et al. Micro-RNA profiling in kidney and bladder cancers. Urol Oncol. 2007;25(5):387–392. doi: 10.1016/j.urolonc.2007.01.019
  84. Heegaard NH, Schetter AJ, Welsh JA, et al. Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer. Int J Cancer. 2012;130(6):1378–1386. doi: 10.1002/ijc.26153
  85. Leung CM, Chen TW, Li SC, et al. MicroRNA expression profiles in human breast cancer cells after multifraction and single-dose radiation treatment. Oncol Rep. 2014;31(5):2147–2156. doi: 10.3892/or.2014.3089
  86. Lynam-Lennon N, Heavey S, Sommerville G, et al. MicroRNA-17 is downregulated in esophageal adenocarcinoma cancer stem-like cells and promotes a radioresistant phenotype. Oncotarget. 2017;8(7):11400–11413. doi: 10.18632/oncotarget.13940
  87. Wei Q, Li YX, Liu M, et al. MiR-17-5p targets TP53INP1 and regulates cell proliferation and apoptosis of cervical cancer cells. IUBMB Life. 2012;64(8):697–704. doi: 10.1002/iub.1051
  88. Wu Q, Luo G, Yang Z, et al. miR-17-5p promotes proliferation by targeting SOCS6 in gastric cancer cells. FEBS Lett. 2014;588(12):2055–2062. doi: 10.1016/j.febslet.2014.04.036
  89. Yu J, Ohuchida K, Mizumoto K, et al. MicroRNA miR-17-5p is overexpressed in pancreatic cancer, associated with a poor prognosis, and involved in cancer cell proliferation and invasion. Cancer Biol Ther. 2010;10(8):748–757. doi: 10.4161/cbt.10.8.13083
  90. Zhu H, Han C, Wu T. MiR-17-92 cluster promotes hepatocarcinogenesis. Carcinogenesis. 2015;36(10):1213–1222. doi: 10.1093/carcin/bgv112
  91. Zhou X, Wang X, Huang Z, et al. Prognostic value of miR-21 in various cancers: an updating meta-analysis. PLoS One. 2014;9(7):e102413. doi: 10.1371/journal.pone.0102413
  92. Li Y, Zhao S, Zhen Y, et al. A miR-21 inhibitor enhances apoptosis and reduces G(2)-M accumulation induced by ionizing radiation in human glioblastoma U251 cells. Brain Tumor Pathol. 2011;28(3):209–214. doi: 10.1007/s10014-011-0037-1
  93. Peng J, Lv Y, Wu C. Radiation-resistance increased by overexpression of microRNA-21 and inhibition of its target PTEN in esophageal squamous cell carcinoma. J Int Med Res. 2020;48(4):300060519882543. doi: 10.1177/0300060519882543
  94. Lin J, Liu Z, Liao S, et al. Elevation of long non-coding RNA GAS5 and knockdown of microRNA-21 up-regulate RECK expression to enhance esophageal squamous cell carcinoma cell radio-sensitivity after radiotherapy. Genomics. 2020;112(3):2173–2185. doi: 10.1016/j.ygeno.2019.12.013
  95. Li F, Lv JH, Liang L, et al. Downregulation of microRNA-21 inhibited radiation-resistance of esophageal squamous cell carcinoma. Cancer Cell Int. 2018;18:39. doi: 10.1186/s12935-018-0502-6
  96. Creighton CJ, Fountain MD, Yu Z, et al. Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers. Cancer Res. 2010;70(5):1906–1915. doi: 10.1158/0008-5472.CAN-09-3875
  97. Shibuya N, Kakeji Y, Shimono Y. MicroRNA-93 targets WASF3 and functions as a metastasis suppressor in breast cancer. Cancer Sci. 2020;111(6):2093–2103. doi: 10.1111/cas.14423
  98. Lynam-Lennon N, Reynolds JV, Marignol L, et al. MicroRNA-31 modulates tumour sensitivity to radiation in oesophageal adenocarcinoma. J Mol Med (Berl). 2012;90(12):1449–1458. doi: 10.1007/s00109-012-0924-x
  99. Zhang W, Zhu Y, Zhou Y, et al. miRNA-31 increases radiosensitivity through targeting STK40 in colorectal cancer cells. Asia Pac J Clin Oncol. 2022;18(3):267–278. doi: 10.1111/ajco.13602
  100. Ma W, Yu J, Qi X, et al. Radiation-induced microRNA-622 causes radioresistance in colorectal cancer cells by down-regulating Rb. Oncotarget. 2015;6(18):15984–15994. doi: 10.18632/oncotarget.3762
  101. Mao A, Tang J, Tang D, et al. MicroRNA-29b-3p enhances radiosensitivity through modulating WISP1-mediated mitochondrial apoptosis in prostate cancer cells. J Cancer. 2020;11(21):6356–6364. doi: 10.7150/jca.48216
  102. Josson S, Sung SY, Lao K, et al. Radiation modulation of microRNA in prostate cancer cell lines. Prostate. 2008;68(15):1599–1606. doi: 10.1002/pros.20827
  103. Chen X, Xu Y, Jiang L, Tan Q. miRNA-218-5p increases cell sensitivity by inhibiting PRKDC activity in radiation-resistant lung carcinoma cells. Thorac Cancer. 2021;12(10):1549–1557. doi: 10.1111/1759-7714.13939
  104. Yang Q, Li J, Hu Y, et al. MiR-218-5p Suppresses the killing effect of natural killer cell to lung adenocarcinoma by targeting SHMT1. Yonsei Med J. 2019;60(6):500–508. doi: 10.3349/ymj.2019.60.6.500
  105. Labbé M, Hoey C, Ray J, et al. microRNAs identified in prostate cancer: Correlative studies on response to ionizing radiation. Mol Cancer. 2020;19(1):63. doi: 10.1186/s12943-020-01186-6
  106. Salim H, Akbar NS, Zong D, et al. miRNA-214 modulates radiotherapy response of non-small cell lung cancer cells through regulation of p38MAPK, apoptosis and senescence. Br J Cancer. 2012;107(8):1361–1373. doi: 10.1038/bjc.2012.382
  107. Wen J, Xiong K, Aili A, et al. PEX5, a novel target of microRNA-31-5p, increases radioresistance in hepatocellular carcinoma by activating Wnt/β-catenin signaling and homologous recombination. Theranostics. 2020;10(12):5322–5340. doi: 10.7150/thno.42371
  108. Du S, Li H, Sun X, et al. MicroRNA-124 inhibits cell proliferation and migration by regulating SNAI2 in breast cancer. Oncol Rep. 2016;36(6):3259–3266. doi: 10.3892/or.2016.5163
  109. Roshani Asl E, Rasmi Y, Baradaran B. MicroRNA-124-3p suppresses PD-L1 expression and inhibits tumorigenesis of colorectal cancer cells via modulating STAT3 signaling. J Cell Physiol. 2021;236(10):7071–7087. doi: 10.1002/jcp.30378
  110. Wei J, Wang F, Kong LY, et al. miR-124 inhibits STAT3 signaling to enhance T cell-mediated immune clearance of glioma. Cancer Res. 2013;73(13):3913–3926. doi: 10.1158/0008-5472.CAN-12-4318
  111. Zhang Y, Zheng L, Huang J, et al. MiR-124 Radiosensitizes human colorectal cancer cells by targeting PRRX1. PLoS One. 2014;9(4):e93917. doi: 10.1371/journal.pone.0093917
  112. Tian Y, Tian Y, Tu Y, et al. microRNA-124 inhibits stem-like properties and enhances radiosensitivity in nasopharyngeal carcinoma cells via direct repression of expression of JAMA. J Cell Mol Med. 2020;24(17):9533–9544. doi: 10.1111/jcmm.15177
  113. Jin X, Chen Y, Chen H, et al. Evaluation of tumor-derived exosomal miRNA as potential diagnostic biomarkers for early-stage non-small cell lung cancer using next-generation sequencing. Clin Cancer Res. 2017;23(17):5311–5319. doi: 10.1158/1078-0432.CCR-17-0577
  114. Miyamoto K, Seki N, Matsushita R, et al. Tumour-suppressive miRNA-26a-5p and miR-26b-5p inhibit cell aggressiveness by regulating PLOD2 in bladder cancer. Br J Cancer. 2016;115(3):354–363. doi: 10.1038/bjc.2016.179
  115. Han F, Huang D, Huang X, et al. Exosomal microRNA-26b-5p down-regulates ATF2 to enhance radiosensitivity of lung adenocarcinoma cells. J Cell Mol Med. 2020;24(14):7730–7742. doi: 10.1111/jcmm.15402
  116. Lopez-Bergami P, Lau E, Ronai Z. Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nat Rev Cancer. 2010;10(1):65–76. doi: 10.1038/nrc2681
  117. Liang Z, Ahn J, Guo D, et al. MicroRNA-302 replacement therapy sensitizes breast cancer cells to ionizing radiation. Pharm Res. 2013;30(4):1008–1016. doi: 10.1007/s11095-012-0936-9
  118. Maia D, de Carvalho AC, Horst MA, et al. Expression of miR-296-5p as predictive marker for radiotherapy resistance in early-stage laryngeal carcinoma. J Transl Med. 2015;13:262. doi: 10.1186/s12967-015-0621-y
  119. Xu LM, Yu H, Yuan YJ, et al. Overcoming of radioresistance in non-small cell lung cancer by microRNA-320a through HIF1α-suppression mediated methylation of PTEN. Front Cell Dev Biol. 2020;8:553733. doi: 10.3389/fcell.2020.553733
  120. Yuan Y, Liao H, Pu Q, et al. miR-410 induces both epithelial-mesenchymal transition and radioresistance through activation of the PI3K/mTOR pathway in non-small cell lung cancer. Signal Transduct Target Ther. 2020;5(1):85. doi: 10.1038/s41392-020-0182-2
  121. Li AL, Chung TS, Chan YN, et al. microRNA expression pattern as an ancillary prognostic signature for radiotherapy. J Transl Med. 2018;16(1):341. doi: 10.1186/s12967-018-1711-4

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. PRISMA flow chart.

下载 (332KB)

版权所有 © Eco-Vector, 2025

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».