Radioresistance of Malignant Neoplasms: Current Understanding of the Role of microRNAs in Overcoming it
- 作者: Gamidova E.A.1, Ushakova A.M.2, Shaposhnikova O.A.3, Rogochiy E.A.1, Bryukhno A.I.2, Karapetova V.E.1, Mamedova E.E.4, Buranbaeva F.Z.5, Aitkulova K.R.6, Logvinenko A.I.2, Mironenko Y.I.1, Bdoyan A.A.1, Chimidova D.Y.1, Fursova V.I.1
-
隶属关系:
- Rostov State Medical University
- Kuban State Medical University
- Russian State Social University
- Samara State Medical University
- Bashkir State Medical University
- Orenburg Republican Hospital
- 期: 卷 17, 编号 1 (2025)
- 页面: 7-26
- 栏目: Reviews
- URL: https://journal-vniispk.ru/vszgmu/article/view/310507
- DOI: https://doi.org/10.17816/mechnikov642049
- EDN: https://elibrary.ru/HVXFRI
- ID: 310507
如何引用文章
详细
Radiation therapy is one of the most common cancer treatment methods, with approximately 50–60% of cancer patients receiving it. Despite the outstanding advances in the field of its application, especially once technology is concerned, significant obstacles still need to be overcome. The main problems of radiation therapy include tumor resistance and damage to healthy tissues, which leads to negative consequences and inadequate tumor control. Manipulations with the microRNA family is considered to be a promising approach for overcoming these limitations.
The purpose of the review is to analyze the literature data on the role of microRNAs in the regulation of resistance to radiation therapy in human tumors, as well as to evaluate the possibility of manipulations with microRNAs to overcome radioresistance. The evaluation of the articles was carried out in accordance with PRISMA guidelines. The search retrieved 2153 publications. The search queries included the following keywords and their combinations: “microRNA”, “cancer”, “oncological diseases”, “malignant neoplasms”, “radiation therapy”, “radioresistance”. The analysis of the literature data shows that microRNAs will play an important role in radiation oncology in the future. The use of microRNAs is likely to be the basis for the development of specialized therapies that will increase radiosensitivity, as well as for predicting the response to radiation therapy. Early studies have shown that microRNAs can be used as biomarkers for predicting and monitoring therapy, providing a more accurate and personalized approach to patient management.
作者简介
Emina Gamidova
Rostov State Medical University
编辑信件的主要联系方式.
Email: neurosurg@bk.ru
ORCID iD: 0009-0009-6383-6271
俄罗斯联邦, Rostov-on-Don
Anastasiia Ushakova
Kuban State Medical University
Email: ushakowa.nastya2001@gmail.com
ORCID iD: 0009-0000-1638-3032
俄罗斯联邦, Krasnodar
Olga Shaposhnikova
Russian State Social University
Email: logeya@ya.ru
ORCID iD: 0009-0007-0385-7965
俄罗斯联邦, Moscow
Evgeniy Rogochiy
Rostov State Medical University
Email: evgeniy_rogochiy@mail.ru
ORCID iD: 0009-0000-2069-1548
俄罗斯联邦, Rostov-on-Don
Anna Bryukhno
Kuban State Medical University
Email: anna.bryukhno@mail.ru
ORCID iD: 0009-0000-8986-7169
俄罗斯联邦, Krasnodar
Valeria Karapetova
Rostov State Medical University
Email: karapetova.valeria@yandex.ru
ORCID iD: 0009-0004-7409-1109
俄罗斯联邦, Rostov-on-Don
Esmira Mamedova
Samara State Medical University
Email: esmirammv0307@yandex.ru
ORCID iD: 0009-0009-2636-1422
俄罗斯联邦, Samara
Firuza Buranbaeva
Bashkir State Medical University
Email: mingazhevafiruza@mail.ru
ORCID iD: 0009-0006-7889-6574
俄罗斯联邦, Ufa
Kamilia Aitkulova
Orenburg Republican Hospital
Email: tayguzina@mail.ru
ORCID iD: 0009-0007-4655-6476
MD
俄罗斯联邦, OrenburgAnastasiya Logvinenko
Kuban State Medical University
Email: logvinenko-nastasya@mail.ru
ORCID iD: 0009-0000-7218-8098
俄罗斯联邦, Krasnodar
Yulia Mironenko
Rostov State Medical University
Email: yulia.mironenko.22.09.17@gmail.com
ORCID iD: 0009-0009-6876-6313
俄罗斯联邦, Rostov-on-Don
Aelita Bdoyan
Rostov State Medical University
Email: aelitabdoyan@mail.ru
ORCID iD: 0009-0005-8290-7910
俄罗斯联邦, Rostov-on-Don
Darina Chimidova
Rostov State Medical University
Email: dgretly@mail.ru
ORCID iD: 0009-0006-3245-5976
俄罗斯联邦, Rostov-on-Don
Valentina Fursova
Rostov State Medical University
Email: valyakane@gmail.com
ORCID iD: 0009-0007-1088-2843
俄罗斯联邦, Rostov-on-Don
参考
- Kaprin AD, Bojko AV, Gevorkov AR, Bolotina LV. The current state of radiotherapy in patients with oropharyngeal squamous cell carcinoma. A radiation therapist’s view. P.A. Herzen Journal of Oncology. 2017;6(4):4–8. EDN: ZFCHEL doi: 10.17116/onkolog2017644-8
- Zhang S, Zeng N, Yang J, et al. Advancements of radiotherapy for recurrent head and neck cancer in modern era. Radiat Oncol. 2023;18(1):166. doi: 10.1186/s13014-023-02342-0
- Olivares-Urbano MA, Griñán-Lisón C, Marchal JA, Núñez MI. CSC radioresistance: a therapeutic challenge to improve radiotherapy effectiveness in cancer. Cells. 2020;9(7):1651. doi: 10.3390/cells9071651
- Senchukova MA, Makarova EV, Kalinin EA, et al. Modern concepts on the role of hypoxia in the development of tumor radioresistance. Siberian journal of oncology. 2020;19(6):141–147. EDN: FKZAJO doi: 10.21294/1814-4861-2020-19-6-141-147
- Omelchuk EP, Kutilin DS, Dimitriadi SN, et al. Molecular genetic aspects of prostate cancer radioresistance. Bulletin of Siberian Medicine. 2021;20(3):182–192. EDN: XWCPQK doi: 10.20538/1682-0363-2021-3-182-192
- Janiak MK, Pocięgiel M, Welsh JS. Time to rejuvenate ultra-low dose whole-body radiotherapy of cancer. Crit Rev Oncol Hematol. 2021;160:103286. doi: 10.1016/j.critrevonc.2021.103286
- Kuznetsov KO, Sharipova EF, Nizayeva AS, et al. The role of microRNAs in normal condition and in endometrial pathology. Russian Bulletin of Obstetrician-Gynecologist. 2023;23(4):27–34. EDN: OZVRZX doi: 10.17116/rosakush20232304127
- Zhu L, Wang M, Chen N, et al. Mechanisms of microRNA action in rectal cancer radiotherapy. Chin Med J (Engl). 2022;135(17):2017–2025. doi: 10.1097/CM9.0000000000002139
- Halikov AA, Kildyushov EM, Kuznetsov KO, et al. Use of microRNA to estimate time science death: review. Russian Journal of Forensic Medicine. 2021;7(3):132–138. EDN: FHYOZZ doi: 10.17816/fm412
- Yu L, Yang Y, Hou J, et al. MicroRNA-144 affects radiotherapy sensitivity by promoting proliferation, migration and invasion of breast cancer cells. Oncol Rep. 2015;34(4):1845–1852. doi: 10.3892/or.2015.4173
- Yousefi M, Bahrami T, Salmaninejad A, et al. Lung cancer-associated brain metastasis: Molecular mechanisms and therapeutic options. Cell Oncol (Dordr). 2017;40(5):419–441. doi: 10.1007/s13402-017-0345-5
- Sun T, Yin YF, Jin HG, et al. Exosomal microRNA-19b targets FBXW7 to promote colorectal cancer stem cell stemness and induce resistance to radiotherapy. Kaohsiung J Med Sci. 2022;38(2):108–119. doi: 10.1002/kjm2.12449
- Petrović N, Stanojković TP, Nikitović M. MicroRNAs in prostate cancer following radiotherapy: towards predicting response to radiation treatment. Curr Med Chem. 2022;29(9):1543–1560. doi: 10.2174/0929867328666210804085135
- Pathak S, Meng WJ, Sriramulu S, et al. Association of MicroRNA-652 expression with radiation response of colorectal cancer: a study from rectal cancer patients in a swedish trial of preoperative radiotherapy. Curr Gene Ther. 2023;23(5):356–367. doi: 10.2174/1566523223666230418111613
- Mueller AK, Lindner K, Hummel R, et al. MicroRNAs and their impact on radiotherapy for cancer. Radiat Res. 2016;185(6):668–677. doi: 10.1667/RR14370.1
- Sha H, Gan Y, Xu F, et al. MicroRNA-381 in human cancer: Its involvement in tumour biology and clinical applications potential. J Cell Mol Med. 2022;26(4):977–989. doi: 10.1111/jcmm.17161
- Mirzaei S, Zarrabi A, Asnaf SE, et al. The role of microRNA-338-3p in cancer: growth, invasion, chemoresistance, and mediators. Life Sci. 2021;268:119005. doi: 10.1016/j.lfs.2020.119005
- Porrazzo A, Cassandri M, D’Alessandro A, et al. DNA repair in tumor radioresistance: insights from fruit flies genetics. Cell Oncol (Dordr). 2024;47(3):717–732. doi: 10.1007/s13402-023-00906-6
- Cipolla GA. A non-canonical landscape of the microRNA system. Front Genet. 2014;5:337. doi: 10.3389/fgene.2014.00337
- Seok H, Ham J, Jang ES, Chi SW. MicroRNA target recognition: insights from transcriptome-wide non-canonical interactions. Mol Cells. 2016;39(5):375–381. doi: 10.14348/molcells.2016.0013
- Wang ZH, Liu T. MicroRNA21 meets neuronal TLR8: non-canonical functions of microrna in neuropathic pain. Neurosci Bull. 2019;35(5):949–952. doi: 10.1007/s12264-019-00366-9
- Beylerli OA, Gareev IF, Beylerli AT. Micro RNAS as new players in control of hypothalamic functions. Creative surgery and oncology. 2019;9(2):138–143. EDN: WVZNJW doi: 10.24060/2076-3093-2019-9-2-138-143
- Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141(4):1202–1207. doi: 10.1016/j.jaci.2017.08.034
- Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Vet Pathol. 2014;51(4):759–774. doi: 10.1177/0300985813502820
- Miroshnichenko SK, Patutina OA, Zenkova MA. miRNA-targeting oligonucleotide constructs with various mechanisms of action as effective inhibitors of carcinogenesis. Biological Products. Prevention, Diagnosis, Treatment. 2024;24(2):140–156. EDN: EJIPIE doi: 10.30895/2221-996X-2024-24-2-140-156
- Ho PTB, Clark IM, Le LTT. MicroRNA-based diagnosis and therapy. Int J Mol Sci. 2022;23(13):7167. doi: 10.3390/ijms23137167
- Kabzinski J, Maczynska M, Majsterek I. MicroRNA as a novel biomarker in the diagnosis of head and neck cancer. Biomolecules. 2021;11(6):844. doi: 10.3390/biom11060844
- Gurbuz N, Ozpolat B. MicroRNA-based targeted therapeutics in pancreatic cancer. Anticancer Res. 2019;39(2):529–532. doi: 10.21873/anticanres.13144
- Gao L, Zheng H, Cai Q, Wei L. Autophagy and tumour radiotherapy. Adv Exp Med Biol. 2020;1207:375–387. doi: 10.1007/978-981-15-4272-5_25
- Citrin DE. Recent developments in radiotherapy. N Engl J Med. 2017;377(11):1065–1075. doi: 10.1056/NEJMra1608986
- Naumenko NV, Petruseva IO, Lavrik OI. Bulky adducts in clustered DNA lesions: causes of resistance to the NER system. Acta Naturae. 2023;14(4):38–49. EDN: KVZERW doi: 10.32607/actanaturae.11741
- Belyashova AS, Galkin MV, Antipina NA, et al. Cell cultures in assessing radioresistance of glioblastomas. Burdenko’s Journal of Neurosurgery. 2022;86(5):126-132. EDN: YDUWNQ doi: 10.17116/neiro202286051126
- Allen C, Her S, Jaffray DA. Radiotherapy for cancer: present and future. Adv Drug Deliv Rev. 2017;109:1–2. doi: 10.1016/j.addr.2017.01.004
- Santivasi WL, Xia F. Ionizing radiation-induced DNA damage, response, and repair. Antioxid Redox Signal. 2014;21(2):251–259. doi: 10.1089/ars.2013.5668
- Pan D, Du YR, Li R, et al. SET8 Inhibition potentiates radiotherapy by suppressing DNA damage repair in carcinomas. Biomed Environ Sci. 2022;35(3):194–205. doi: 10.3967/bes2022.028
- Jiang Y, Liu Y, Hu H. Studies on DNA damage repair and precision radiotherapy for breast cancer. Adv Exp Med Biol. 2017;1026:105–123. doi: 10.1007/978-981-10-6020-5_5
- Goldstein M, Kastan MB. The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu Rev Med. 2015;66:129–143. doi: 10.1146/annurev-med-081313-121208
- Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther. 2020;5(1):60. doi: 10.1038/s41392-020-0150-x
- Xu T, Ma Q, Li Y, et al. A small molecule inhibitor of the UBE2F-CRL5 axis induces apoptosis and radiosensitization in lung cancer. Signal Transduct Target Ther. 2022;7(1):354. doi: 10.1038/s41392-022-01182-w
- Wang J, Wang Z, Sun Y, Liu D. Bryostatin-1 inhibits cell proliferation of hepatocarcinoma and induces cell cycle arrest by activation of GSK3β. Biochem Biophys Res Commun. 2019;512(3):473–478. doi: 10.1016/j.bbrc.2019.03.014
- Vakili-Samiani S, Khanghah OJ, Gholipour E, et al. Cell cycle involvement in cancer therapy; WEE1 kinase, a potential target as therapeutic strategy. Mutat Res. 2022;824:111776. doi: 10.1016/j.mrfmmm.2022.111776
- Li MY, Liu JQ, Chen DP, et al. Radiotherapy induces cell cycle arrest and cell apoptosis in nasopharyngeal carcinoma via the ATM and Smad pathways. Cancer Biol Ther. 2017;18(9):681–693. doi: 10.1080/15384047.2017.1360442
- Lin S, Yan Y, Liu Y, et al. Sensitisation of human lung adenocarcinoma A549 cells to radiotherapy by Nimotuzumab is associated with enhanced apoptosis and cell cycle arrest in the G2/M phase. Cell Biol Int. 2015;39(2):146–151. doi: 10.1002/cbin.10342
- Kashyap D, Garg VK, Goel N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv Protein Chem Struct Biol. 2021;125:73–120. doi: 10.1016/bs.apcsb.2021.01.003
- Bramanti S, Mannina D, Chiappella A, et al. Role of bridging RT in relapsed/refractory diffuse large B-cell lymphoma undergoing CAR-T therapy: a multicenter study. Bone Marrow Transplant. 2024. doi: 10.1038/s41409-024-02427-8
- Fulda S. Targeting IAP proteins in combination with radiotherapy. Radiat Oncol. 2015;10:105. doi: 10.1186/s13014-015-0399-3
- Prasanna PGS, Ahmed MM, Hong JA, Coleman CN. Best practices and novel approaches for the preclinical development of drug-radiotherapy combinations for cancer treatment. Lancet Oncol. 2024;25(10):e501–e511. doi: 10.1016/S1470-2045(24)00199-2
- Toropovsky AN, Pavlova ON, Viktorov DA, Nikitin AG. Molecular-genetic mechanisms of the signal cascade RAS-RAF-MEK-ERK associated with the development of the tumor process and the purpose of targeted drugs for colorectal cancer. Bulletin of the Medical Institute REAVIZ: rehabilitation, doctor and health. 2021;(4(52)):25–35. EDN: WTKZRN doi: 10.20340/vmi-rvz.2021.4.MORPH.3
- Oleinik EK, Shibaev MI, Ignatiev KS, et al. Tumor microenvironment: the formation of the immune profile. Medical Immunology (Russia). 2020;22(2):207–220. EDN: QEZBBN doi: 10.15789/1563-0625-TMT-1909
- Ebbing EA, van der Zalm AP, Steins A, et al. Stromal-derived interleukin 6 drives epithelial-to-mesenchymal transition and therapy resistance in esophageal adenocarcinoma. Proc Natl Acad Sci U S A. 2019;116(6):2237–2242. doi: 10.1073/pnas.1820459116
- Krisnawan VE, Stanley JA, Schwarz JK, DeNardo DG. Tumor microenvironment as a regulator of radiation therapy: new insights into stromal-mediated radioresistance. Cancers (Basel). 2020;12(10):2916. doi: 10.3390/cancers12102916
- Oleynikova NА, Danilova NV, Mikhailov IA, et al. Cancer-associated fibroblasts and their significance in tumor progression. Russian Journal of Archive of Pathology. 2020;82(1):68-77. EDN: RAFMFM doi: 10.17116/patol20208201168
- Ansems M, Span PN. The tumor microenvironment and radiotherapy response; a central role for cancer-associated fibroblasts. Clin Transl Radiat Oncol. 2020;22:90–97. doi: 10.1016/j.ctro.2020.04.001
- Piper M, Mueller AC, Karam SD. The interplay between cancer associated fibroblasts and immune cells in the context of radiation therapy. Mol Carcinog. 2020;59(7):754–765. doi: 10.1002/mc.23205
- Walcher L, Kistenmacher AK, Suo H, et al. Cancer stem cells-origins and biomarkers: perspectives for targeted personalized therapies. Front Immunol. 2020;11:1280. doi: 10.3389/fimmu.2020.01280
- Taeb S, Ashrafizadeh M, Zarrabi A, et al. Role of tumor microenvironment in cancer stem cells resistance to radiotherapy. Curr Cancer Drug Targets. 2022;22(1):18–30. doi: 10.2174/1568009622666211224154952
- Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell (CSC) resistance drivers. Life Sci. 2019;234:116781. doi: 10.1016/j.lfs.2019.116781
- Dandawate PR, Subramaniam D, Jensen RA, Anant S. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy. Semin Cancer Biol. 2016;40-41:192–208. doi: 10.1016/j.semcancer.2016.09.001
- Ahmed SU, Carruthers R, Gilmour L, et al. Selective inhibition of parallel DNA damage response pathways optimizes radiosensitization of glioblastoma stem-like cells. Cancer Res. 2015;75(20):4416–4428. doi: 10.1158/0008-5472.CAN-14-3790
- Carruthers RD, Ahmed SU, Ramachandran S, et al. Replication stress drives constitutive activation of the DNA damage response and radioresistance in glioblastoma stem-like cells. Cancer Res. 2018;78(17):5060–5071. doi: 10.1158/0008-5472.CAN-18-0569
- Venere M, Hamerlik P, Wu Q, et al. Therapeutic targeting of constitutive PARP activation compromises stem cell phenotype and survival of glioblastoma-initiating cells. Cell Death Differ. 2014;21(2):258–269. doi: 10.1038/cdd.2013.136
- Wang Y, Xu H, Liu T, et al. Temporal DNA-PK activation drives genomic instability and therapy resistance in glioma stem cells. JCI Insight. 2018;3(3):e98096. doi: 10.1172/jci.insight.98096
- Timme CR, Rath BH, O’Neill JW, et al. The DNA-PK inhibitor VX-984 enhances the radiosensitivity of glioblastoma cells grown in vitro and as orthotopic xenografts. Mol Cancer Ther. 2018;17(6):1207–1216. doi: 10.1158/1535-7163.MCT-17-1267
- Gomez-Roman N, Amoah-Buahin E, Watts C, Chalmers AJ. Abrogation of radioresistance in glioblastoma stem-like cells by inhibition of ATM kinase. Mol Oncol. 2015;9(1):192–203. doi: 10.1016/j.molonc.2014.08.003
- Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–760. doi: 10.1038/nature05236
- Zhang P, Wei Y, Wang L, et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol. 2014;16(9):864–875. doi: 10.1038/ncb3013
- Tachon G, Cortes U, Guichet PO, et al. Cell cycle changes after glioblastoma stem cell irradiation: the major role of RAD51. Int J Mol Sci. 2018;19(10):3018. doi: 10.3390/ijms19103018
- Mir SE, De Witt Hamer PC, Krawczyk PM, et al. In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell. 2010;18(3):244–57. doi: 10.1016/j.ccr.2010.08.011
- Zhang M, Atkinson RL, Rosen JM. Selective targeting of radiation-resistant tumor-initiating cells. Proc Natl Acad Sci U S A. 2010;107(8):3522–3527. doi: 10.1073/pnas.0910179107
- Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci. 2016;73(2):377–392. doi: 10.1007/s00018-015-2070-4
- Shimura T, Noma N, Sano Y, et al. AKT-mediated enhanced aerobic glycolysis causes acquired radioresistance by human tumor cells. Radiother Oncol. 2014;112(2):302–307. doi: 10.1016/j.radonc.2014.07.015
- Wu Y, Song Y, Wang R, Wang T. Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer. 2023;22(1):96. doi: 10.1186/s12943-023-01801-2
- Yang X, Lu Y, Hang J, et al. Lactate-modulated immunosuppression of myeloid-derived suppressor cells contributes to the radioresistance of pancreatic cancer. Cancer Immunol Res. 2020;8(11):1440–1451. doi: 10.1158/2326-6066.CIR-20-0111
- Fang Y, Zhan Y, Xie Y, et al. Integration of glucose and cardiolipin anabolism confers radiation resistance of HCC. Hepatology. 2022;75(6):1386–1401. doi: 10.1002/hep.32177
- Bacci M, Lorito N, Smiriglia A, Morandi A. Fat and furious: lipid metabolism in antitumoral therapy response and resistance. Trends Cancer. 2021;7(3):198–213. doi: 10.1016/j.trecan.2020.10.004
- Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–128. doi: 10.1126/science.aaa1348
- Romaszko AM, Doboszyńska A. Multiple primary lung cancer: A literature review. Adv Clin Exp Med. 2018;27(5):725–730. doi: 10.17219/acem/68631
- Lawler J. Counter regulation of tumor angiogenesis by vascular endothelial growth factor and thrombospondin-1. Semin Cancer Biol. 2022;86(2):126–135. doi: 10.1016/j.semcancer.2022.09.006
- Anauate AC, Leal MF, Calcagno DQ, et al. The complex network between MYC oncogene and micrornas in gastric cancer: an overview. Int J Mol Sci. 2020;21(5):1782. doi: 10.3390/ijms21051782
- Hossain A, Kuo MT, Saunders GF. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol. 2006;26(21):8191–8201. doi: 10.1128/MCB.00242-06
- Yu Z, Wang C, Wang M, et al. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol. 2008;182(3):509–517. doi: 10.1083/jcb.200801079
- Earle JS, Luthra R, Romans A, et al. Association of microRNA expression with microsatellite instability status in colorectal adenocarcinoma. J Mol Diagn. 2010;12(4):433–440. doi: 10.2353/jmoldx.2010.090154
- Gottardo F, Liu CG, Ferracin M, et al. Micro-RNA profiling in kidney and bladder cancers. Urol Oncol. 2007;25(5):387–392. doi: 10.1016/j.urolonc.2007.01.019
- Heegaard NH, Schetter AJ, Welsh JA, et al. Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer. Int J Cancer. 2012;130(6):1378–1386. doi: 10.1002/ijc.26153
- Leung CM, Chen TW, Li SC, et al. MicroRNA expression profiles in human breast cancer cells after multifraction and single-dose radiation treatment. Oncol Rep. 2014;31(5):2147–2156. doi: 10.3892/or.2014.3089
- Lynam-Lennon N, Heavey S, Sommerville G, et al. MicroRNA-17 is downregulated in esophageal adenocarcinoma cancer stem-like cells and promotes a radioresistant phenotype. Oncotarget. 2017;8(7):11400–11413. doi: 10.18632/oncotarget.13940
- Wei Q, Li YX, Liu M, et al. MiR-17-5p targets TP53INP1 and regulates cell proliferation and apoptosis of cervical cancer cells. IUBMB Life. 2012;64(8):697–704. doi: 10.1002/iub.1051
- Wu Q, Luo G, Yang Z, et al. miR-17-5p promotes proliferation by targeting SOCS6 in gastric cancer cells. FEBS Lett. 2014;588(12):2055–2062. doi: 10.1016/j.febslet.2014.04.036
- Yu J, Ohuchida K, Mizumoto K, et al. MicroRNA miR-17-5p is overexpressed in pancreatic cancer, associated with a poor prognosis, and involved in cancer cell proliferation and invasion. Cancer Biol Ther. 2010;10(8):748–757. doi: 10.4161/cbt.10.8.13083
- Zhu H, Han C, Wu T. MiR-17-92 cluster promotes hepatocarcinogenesis. Carcinogenesis. 2015;36(10):1213–1222. doi: 10.1093/carcin/bgv112
- Zhou X, Wang X, Huang Z, et al. Prognostic value of miR-21 in various cancers: an updating meta-analysis. PLoS One. 2014;9(7):e102413. doi: 10.1371/journal.pone.0102413
- Li Y, Zhao S, Zhen Y, et al. A miR-21 inhibitor enhances apoptosis and reduces G(2)-M accumulation induced by ionizing radiation in human glioblastoma U251 cells. Brain Tumor Pathol. 2011;28(3):209–214. doi: 10.1007/s10014-011-0037-1
- Peng J, Lv Y, Wu C. Radiation-resistance increased by overexpression of microRNA-21 and inhibition of its target PTEN in esophageal squamous cell carcinoma. J Int Med Res. 2020;48(4):300060519882543. doi: 10.1177/0300060519882543
- Lin J, Liu Z, Liao S, et al. Elevation of long non-coding RNA GAS5 and knockdown of microRNA-21 up-regulate RECK expression to enhance esophageal squamous cell carcinoma cell radio-sensitivity after radiotherapy. Genomics. 2020;112(3):2173–2185. doi: 10.1016/j.ygeno.2019.12.013
- Li F, Lv JH, Liang L, et al. Downregulation of microRNA-21 inhibited radiation-resistance of esophageal squamous cell carcinoma. Cancer Cell Int. 2018;18:39. doi: 10.1186/s12935-018-0502-6
- Creighton CJ, Fountain MD, Yu Z, et al. Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers. Cancer Res. 2010;70(5):1906–1915. doi: 10.1158/0008-5472.CAN-09-3875
- Shibuya N, Kakeji Y, Shimono Y. MicroRNA-93 targets WASF3 and functions as a metastasis suppressor in breast cancer. Cancer Sci. 2020;111(6):2093–2103. doi: 10.1111/cas.14423
- Lynam-Lennon N, Reynolds JV, Marignol L, et al. MicroRNA-31 modulates tumour sensitivity to radiation in oesophageal adenocarcinoma. J Mol Med (Berl). 2012;90(12):1449–1458. doi: 10.1007/s00109-012-0924-x
- Zhang W, Zhu Y, Zhou Y, et al. miRNA-31 increases radiosensitivity through targeting STK40 in colorectal cancer cells. Asia Pac J Clin Oncol. 2022;18(3):267–278. doi: 10.1111/ajco.13602
- Ma W, Yu J, Qi X, et al. Radiation-induced microRNA-622 causes radioresistance in colorectal cancer cells by down-regulating Rb. Oncotarget. 2015;6(18):15984–15994. doi: 10.18632/oncotarget.3762
- Mao A, Tang J, Tang D, et al. MicroRNA-29b-3p enhances radiosensitivity through modulating WISP1-mediated mitochondrial apoptosis in prostate cancer cells. J Cancer. 2020;11(21):6356–6364. doi: 10.7150/jca.48216
- Josson S, Sung SY, Lao K, et al. Radiation modulation of microRNA in prostate cancer cell lines. Prostate. 2008;68(15):1599–1606. doi: 10.1002/pros.20827
- Chen X, Xu Y, Jiang L, Tan Q. miRNA-218-5p increases cell sensitivity by inhibiting PRKDC activity in radiation-resistant lung carcinoma cells. Thorac Cancer. 2021;12(10):1549–1557. doi: 10.1111/1759-7714.13939
- Yang Q, Li J, Hu Y, et al. MiR-218-5p Suppresses the killing effect of natural killer cell to lung adenocarcinoma by targeting SHMT1. Yonsei Med J. 2019;60(6):500–508. doi: 10.3349/ymj.2019.60.6.500
- Labbé M, Hoey C, Ray J, et al. microRNAs identified in prostate cancer: Correlative studies on response to ionizing radiation. Mol Cancer. 2020;19(1):63. doi: 10.1186/s12943-020-01186-6
- Salim H, Akbar NS, Zong D, et al. miRNA-214 modulates radiotherapy response of non-small cell lung cancer cells through regulation of p38MAPK, apoptosis and senescence. Br J Cancer. 2012;107(8):1361–1373. doi: 10.1038/bjc.2012.382
- Wen J, Xiong K, Aili A, et al. PEX5, a novel target of microRNA-31-5p, increases radioresistance in hepatocellular carcinoma by activating Wnt/β-catenin signaling and homologous recombination. Theranostics. 2020;10(12):5322–5340. doi: 10.7150/thno.42371
- Du S, Li H, Sun X, et al. MicroRNA-124 inhibits cell proliferation and migration by regulating SNAI2 in breast cancer. Oncol Rep. 2016;36(6):3259–3266. doi: 10.3892/or.2016.5163
- Roshani Asl E, Rasmi Y, Baradaran B. MicroRNA-124-3p suppresses PD-L1 expression and inhibits tumorigenesis of colorectal cancer cells via modulating STAT3 signaling. J Cell Physiol. 2021;236(10):7071–7087. doi: 10.1002/jcp.30378
- Wei J, Wang F, Kong LY, et al. miR-124 inhibits STAT3 signaling to enhance T cell-mediated immune clearance of glioma. Cancer Res. 2013;73(13):3913–3926. doi: 10.1158/0008-5472.CAN-12-4318
- Zhang Y, Zheng L, Huang J, et al. MiR-124 Radiosensitizes human colorectal cancer cells by targeting PRRX1. PLoS One. 2014;9(4):e93917. doi: 10.1371/journal.pone.0093917
- Tian Y, Tian Y, Tu Y, et al. microRNA-124 inhibits stem-like properties and enhances radiosensitivity in nasopharyngeal carcinoma cells via direct repression of expression of JAMA. J Cell Mol Med. 2020;24(17):9533–9544. doi: 10.1111/jcmm.15177
- Jin X, Chen Y, Chen H, et al. Evaluation of tumor-derived exosomal miRNA as potential diagnostic biomarkers for early-stage non-small cell lung cancer using next-generation sequencing. Clin Cancer Res. 2017;23(17):5311–5319. doi: 10.1158/1078-0432.CCR-17-0577
- Miyamoto K, Seki N, Matsushita R, et al. Tumour-suppressive miRNA-26a-5p and miR-26b-5p inhibit cell aggressiveness by regulating PLOD2 in bladder cancer. Br J Cancer. 2016;115(3):354–363. doi: 10.1038/bjc.2016.179
- Han F, Huang D, Huang X, et al. Exosomal microRNA-26b-5p down-regulates ATF2 to enhance radiosensitivity of lung adenocarcinoma cells. J Cell Mol Med. 2020;24(14):7730–7742. doi: 10.1111/jcmm.15402
- Lopez-Bergami P, Lau E, Ronai Z. Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nat Rev Cancer. 2010;10(1):65–76. doi: 10.1038/nrc2681
- Liang Z, Ahn J, Guo D, et al. MicroRNA-302 replacement therapy sensitizes breast cancer cells to ionizing radiation. Pharm Res. 2013;30(4):1008–1016. doi: 10.1007/s11095-012-0936-9
- Maia D, de Carvalho AC, Horst MA, et al. Expression of miR-296-5p as predictive marker for radiotherapy resistance in early-stage laryngeal carcinoma. J Transl Med. 2015;13:262. doi: 10.1186/s12967-015-0621-y
- Xu LM, Yu H, Yuan YJ, et al. Overcoming of radioresistance in non-small cell lung cancer by microRNA-320a through HIF1α-suppression mediated methylation of PTEN. Front Cell Dev Biol. 2020;8:553733. doi: 10.3389/fcell.2020.553733
- Yuan Y, Liao H, Pu Q, et al. miR-410 induces both epithelial-mesenchymal transition and radioresistance through activation of the PI3K/mTOR pathway in non-small cell lung cancer. Signal Transduct Target Ther. 2020;5(1):85. doi: 10.1038/s41392-020-0182-2
- Li AL, Chung TS, Chan YN, et al. microRNA expression pattern as an ancillary prognostic signature for radiotherapy. J Transl Med. 2018;16(1):341. doi: 10.1186/s12967-018-1711-4
