How CT reconstruction parameters effect measurement error of pulmonary nodules volume

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

One of the the widely used way to follow up oncological disease is estimation of lesion size differences. Volumetry is one of the most accurate approaches of lesion size estimation. However, being highly sensitive, volumetric errors can reach 60%, which significantly limits the applicability of the method.

Purpose was to estimate the effect of reconstruction parameters on volumetry error.

Materials and methods. 32 patients with pulmonary metastases underwent a CT scanning with 326 foci detected. 326 pulmonary were segmented. Volumetry error was estimated for every lesion with each combination of slice thickness and reconstruction kernel. The effect was measured with linear regression analysis

Results. Systematic and stochastic errors are impacted by slice thickness, reconstruction kernel, lesion position and its diameter. FC07 kernel and larger slice thickness is associated with high systematic error. Both systematic and stochastic errors decrease with lesion enlargment. intrapulmonary lesions have the lowest error regardless the reconstruction parameters.

Lineal regression model was created to prognose error rate. Model standart error was 6.7%. There was corelation between model remnants deviation and slice thickness, reconstruction kernel, lesion position and its diameter.

Conclusion. The systematic error depends on the focal diameter, slice thickness and reconstruction kernel. It can be estimated using the proposed model with a 6% error. Stochastic error mainly depends on lesion size.

About the authors

Zaur A. Alderov

Mytishchi City Clinical Hospital

Author for correspondence.
Email: zaurzz@rambler.ru
ORCID iD: 0000-0002-6255-1583
Russian Federation, Moscow region, Mytishchi

Evgeny V. Rozengauz

Central Research Institute of Roentgenology and Radiology named after Academician A.M. Granov; North-Western State Medical University named after I.I. Mechnikov

Email: rozengaouz@yandex.ru
Russian Federation, Saint Petersburg

Denis Nesterov

Central Research Institute of Roentgenology and Radiology named after Academician A.M. Granov; North-Western State Medical University named after I.I. Mechnikov; National Medical Research Center of Oncology named after N.N. Petrov

Email: cireto@gmail.com
Russian Federation, Saint Petersburg

References

  1. Choi H, Charnsangavej C, de Castro Faria S, et al. CT evaluation of the response of gastrointestinal stromal tumors after imatinib mesylate treatment: a quantitative analysis correlated with FDG PET findings. AJR Am J Roentgenol. 2004;183(6):1619-1628. https://doi.org/10.2214/ajr.183.6.01831619.
  2. Devaraj A, van Ginneken B, Nair A, Baldwin D. Use of volumetry for lung nodule management: Theory and practice. Radiology. 2017;284(3):630-644. https://doi.org/ 10.1148/radiol.2017151022.
  3. Li Q, Gavrielides MA, Sahiner B, et al. Statistical analysis of lung nodule volume measurements with CT in a large-scale phantom study. Med Phys. 2015;42(7):3932-3947. https://doi.org/10.1118/1.4921734.
  4. Liang M, Yip R, Tang W, et al. Variation in screening CT-detected nodule volumetry as a function of size. AJR Am J Roentgenol. 2017;209(2):304-308. https://doi.org/ 10.2214/AJR.16.17159.
  5. Petrou M, Quint LE, Nan B, Baker LH. Pulmonary nodule volumetric measurement variability as a function of CT slice thickness and nodule morphology. AJR Am J Roentgenol. 2007;188(2):306-312. https://doi.org/10.2214/AJR. 05.1063.
  6. Schwartz LH, Litière S, de Vries E, et al. RECIST 1.1 and clarification: From the RECIST committee. Eur J Cancer. 2016;62:132-137. https://doi.org/10.1016/j.ejca. 2016.03.081.
  7. Wormanns D, Kohl G, Klotz E, et al. Volumetric measurements of pulmonary nodules at multi-row detector CT: In vivo reproducibility. Eur Radiol. 2004;14(1):86-92. https://doi.org/10.1007/s00330-003- 2132-0.
  8. Gietema HA, Wang Y, Xu D, et al. Pulmonary nodules detected at lung cancer screening: Interobserver variability of semiautomated volume measurements. Radiology. 2006;241(1):251-257. https://doi.org/10.1148/radiol.2411050860.
  9. Gietema HA, Schaefer-Prokop CM, Mali WP, et al. Pulmonary nodules: interscan variability of semiautomated volume measurements with multisection CT — influence of inspiration level, nodule size, and segmentation performance. Radiology. 2007;245(3):888-894. https://doi.org/ 10.1148/radiol.2452061054.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The dependence of volume estimation systematic error on effective diameter of the lesion, reconstruction kernel and the lesion localization

Download (226KB)
3. Fig. 2. The dependence of the volume estimate random error on the effective lesion diameter

Download (92KB)
4. Fig. 3. The dependence of volume estimate random error from slice thickness

Download (78KB)
5. Fig. 4. The dependence of volume estimate random error on the reconstruction kernel

Download (73KB)

Copyright (c) 2020 Alderov Z.A., Rozengauz E.V., Nesterov D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).