AN IMPROVED VERSION OF THE ATMOSPHERIC SULFUR CYCLE SCHEME FOR EARTH SYSTEM MODEL OF INTERMEDIATE COMPLEXITY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The scheme of the atmospheric sulfur cycle ChAP (Chemical and Aerosol Processes), which is developed for Earth system models of intermediate complexity, is extended by taking into account the dimethylsulfide (DMS) emissions into the atmosphere and the differences of the sulfates washout efficiency between different kinds of precipitation. In addition, the transport scheme is slightly revised. To keep the scheme computationally efficient, the new version of the scheme, ChAP–1.1, still employs the stationary approximations and the prescribed vertical profiles for sulfur compounds in the atmosphere (as it was used in ChAP–1.0 as well), which is related to relatively short lifetimes of the sulfur dioxide and sulfates in the troposphere. As a result, the horizontal distributions of the tropospheric sulfur dioxide and sulfates burdens agree better (relative to those for ChAP–1.0) with the reanalysis data CAMS (Copernicus Atmosphere Monitoring Service) and with the ACCMIP (Atmospheric Chemistry and Climate Model Intercomparison Project) data for the late 20th–early 21st centuries. According to the ChAP–1.1 simulations, the global sulfur dioxide burden in the atmosphere in 1990–2000 is 0.2 TgS, and the respective value for sulfates is 0.6–0.7 TgS with the corresponding lifetimes 1 day and 6 days.

About the authors

A. O Nyrov

Obukhov Institute of Atmospheric Physics, RAS; Lomonosov Moscow State University

Email: andrey.nyro@gmail.com
Moscow, Russia;Moscow, Russia

A. V Eliseev

Obukhov Institute of Atmospheric Physics, RAS; Lomonosov Moscow State University

Moscow, Russia; Moscow, Russia

I. I Mokhov

Obukhov Institute of Atmospheric Physics, RAS; Lomonosov Moscow State University

Moscow, Russia; Moscow, Russia

References

  1. Елисеев А.В. Влияние соединений серы в тропосфере на наземный углеродный цикл // Изв. РАН. Физика атмосферы и океана. 2015. Т. 51. № 6. С. 673–683.
  2. Елисеев А.В., Чжан М., Гизатуллин Р.Д. и др. Влияние сернистого газа в атмосфере на наземный углеродный цикл // Изв. РАН. Физика атмосферы и океана. 2019. Т. 55. № 1. С. 41–53.
  3. Елисеев А.В., Тимажев А.В., Хименес П.Л. Вертикальный масштаб для профилей водяного пара и соединений серы в нижней тропосфере // Оптика атмосферы и океана. 2022. Т. 35. № 07. С. 572–580.
  4. Елисеев А.В. Иерархия моделей земной климатической системы // Изв. вузов. Радиофизика. 2024. Т. 67. № 7. С. 545–561.
  5. Елисеев А.В., Мохов И.И., Аржанов М.М. и др. Модель Земной климатической системы ИФА РАН: структура и основные результаты // Изв. РАН. Физика атмосферы и океана. 2025. Т. 61. № 1
  6. Мохов И.И., Елисеев А.В. Моделирование глобальных климатических изменений в XX–XXIII веках при новых сценариях антропогенных воздействий RCP // Докл. РАН. 2012. Т. 443. № 6. С. 732–736.
  7. Семенов С.М., Кунина И.М., Кухта В.А. Сравнение антропогенных изменений приземных концентраций O3, SO2, CO2 в Европе по экологическому критерию // Докл. РАН. 1998. Т. 361. № 2. С. 275–279.
  8. Суркова Г.В. Химия атмосферы. Москва: ИНФРА-М, 2020. 183 с.
  9. Allen R.J., Landuyt W., Rumbold S.T. An increase in aerosol burden and radiative effects in a warmer world // Nat. Clim. Change. 2016. V. 6. № 3. P. 269–274.
  10. Barth M., Rasch P., Kiehl J. et al. Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model: description, evaluation, features, and sensitivity to aqueous chemistry // Nat. Clim. Change. 2016. V. 6. № 3. P. 269–274.
  11. Bauer E., Petoukhov V., Ganopolski A., Eliseev A.V. Climatic response to anthropogenic sulphate aerosols versus well–mixed greenhouse gases from 1850 to 2000 AD in CLIMBER–2 // Tellus B. 2008. V. 60. № 1. P. 82–97.
  12. Bellouin N., Quaas J., Gryspeerdt E. et al. Bounding global aerosol radiative forcing of climate change // Rev. Geophys. 2020. V. 58. № 1. P. e2019RG000660.
  13. Carn S.A., Fioletov V.E., McLinden C.A. et al. A decade of global volcanic SO2 emissions measured from space // Sci. Rep. 2017. V. 7. P. 44095.
  14. Charlson R.J., Schwartz S.E., Hales J.M. et al. Climate forcing by anthropogenic aerosols // Science. 1992. V. 255. № 5043. P. 423–430.
  15. Chin M., Rood R.B., Lin S.-J. et al. Atmospheric sulfur cycle simulated in the global model GOCART: model description and global properties // J. Geophys. Res. 2000. V. 105. № D20. P. 24671–24687.
  16. Chuang C.C., Penner J.E., Taylor K.E. et al. An assessment of the radiative effects of anthropogenic sulfate // J. Geophys. Res. 1997. V. 102. № D3. P. 3761–3778.
  17. Claussen M., Mysak L., Weaver A. et al. Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models // Сlim. Dyn. 2002. V. 18. № 7. P. 579–586. Climate Change
  18. : The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change / Eds.: Houghton J.T., Ding Y., Griggs D.J., Noguer M., van der Linden P.J., Dai X., Maskell K., Johnson C.A. Cambridge/New–York: Cambridge University Press, 2001. 881 p
  19. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change / Eds.: Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I., Huang M., Leitzell K., Lonnoy E., Matthews J.B.R., Maycock T.K., Waterfield T., Yelekçi O., Yu R., Zhou B. Cambridge/New-York: Cambridge University Press, 2021. 2391 p.
  20. Dee D.P., Uppala S.M., Simmons A.J. et al. The ERA–Interim reanalysis: configuration and performance of the data assimilation system // Q. J. R. Meteorol. Soc. 2011. V. 137. № 656. P. 553–597.
  21. Eby M., Weaver A.J., Alexander K. et al. Historical and idealized climate model experiments: an intercomparison of earth system models of intermediate complexity // Clim. Past. 2013. V. 9. № 3. P. 1111–1140.
  22. Eliseev A.V., Mokhov I.I. Influence of volcanic activity on climate change in the past several centuries: Assessments with a climate model of intermediate complexity // Izv. — Atmos. Ocean. Phys. 2008. V. 44. № 6. P. 671–683.
  23. Eliseev A.V. Impact of tropospheric sulphate aerosols on the terrestrial carbon cycle // Glob. Planet. Change. 2015. V. 124. P. 30–40.
  24. Eliseev A.V., Gizatullin R.D., Timazhev A.V. Chap 1.0: a stationary tropospheric sulfur cycle for Earth system models of intermediate complexity // Geosci. Model Dev. 2021. V. 14. № 12. P. 7725–7747.
  25. Feichter J., Kjellström E., Rodhe H. et al. Simulation of the tropospheric sulfur cycle in a global climate model // Atmos. Environ. 1996. V. 30. № 10–11. P. 1693–1707.
  26. Gliß J., Mortier A., Schulz M. et al. AeroCom phase III multi–model evaluation of the aerosol life cycle and optical properties using ground— and space— based remote sensing as well as surface in situ observations // Atmos. Chem. Phys. 2021. V. 21. № 1. P. 87–128.
  27. Hersbach H., Bell B., Berrisford P. et al. The ERA5 global reanalysis // Q. J. R. Meteorol. Soc. 2020. V. 146. № 730. P. 1999–2049.
  28. Inness A., Ades M., Agustí-Panareda A. et al. The CAMS reanalysis of atmospheric composition // Atmos. Chem. Phys. 2019. V. 19. № 6. P. 3515–3556.
  29. Kalisoras A., Georgoulias A.K., Akritidis D. et al. Decomposing the effective radiative forcing of anthropogenic aerosols based on CMIP6 Earth system models // Atmos. Chem. Phys. 2024. V. 24. № 13. P. 7837— 7872.
  30. Khan A.H., Bannan T.J., Holland R. et al. Impacts of hydroperoxymethyl thioformate on the global marine sulfur budget // ACS Earth Space Chem. 2021. V. 5. № 10. P. 2577–2586.
  31. Koch D., Jacob D., Tegen I. et al. Tropospheric sulfur simulation and sulfate direct radiative forcing in the Goddard Institute for Space Studies general circulation model // J. Geophys. Res. 1991. V. 104. № D19. P. 23799–23822.
  32. Konovalov I.B., Golovushkin N.A., Beekmann M. et al. On the importance of the model representation of organic aerosol in simulations of the direct radiative effect of Siberian biomass burning aerosol in the eastern Arctic // Atmos. Environ. 2023. V. 309. P. 119910.
  33. Kuylenstierna J., Rodhe H., Cinderby S., Hicks K. Acidification in developing countries: ecosystem sensitivity and the critical load approach on a global scale // Ambio. 2001. V. 30. № 1. P. 20–28.
  34. Lamarque J.–F., Bond T.C., Eyring V. et al. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application // Atmos. Chem. Phys. 2010. V. 10. № 15. P. 7017–7039.
  35. Lamarque J.-F., Kyle G.P., Meinshausen M. et al. Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways // Clim. Change. 2013. V. 109. № 1. P. 191–212.
  36. Lana A., Bell T.G., Simó R. et al. An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean // Glob. Biogeochem. Cycles. 2011. V. 25. № 1. P. GB1004.
  37. Langner J., Rodhe H. A global three–dimensional model of the tropospheric sulphur cycle // J. Atmos. Chem. 1991. V. 13. P. 225–263.
  38. Lohmann U., von Salzen K., McFarlane N. et al. Tropospheric sulfur cycle in the Canadian general circulation model // J. Geophys. Res. 1999. V. 104. № D21. P. 26833–26858.
  39. MacDougall A.H., Frölicher T.L., Jones C.D. et al. Is there warming in the pipeline? A multi–model analysis of the Zero Emissions Commitment from CO 2 // Biogeosciences. 2020. V. 17. № 11. P. 2987–3016.
  40. Matus A.V., L’Ecuyer T.S., Henderson D.S. New estimates of aerosol direct radiative effects and forcing from A–train satellite observations // Geophys. Res. Lett. 2019. V. 46. № 14. P. 8338–8346.
  41. Myhre G., Samset B.H., Schulz M. et al. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations // Atmos. Chem. Phys. 2013. V. 13. № 4. P. 1853–1877.
  42. Novak G.A., Fite C.H., Holmes C.D. et al. Rapid cloud removal of dimethyl sulfide oxidation products limits SO2 and cloud condensation nuclei production in the marine atmosphere // Proc. Natl. Acad. Sci. USA. 2021. V. 118. № 42. P. e2110472118.
  43. Petoukhov V., Claussen M., Berger A. et al. EMIC Intercomparison Project (EMIP–CO2): comparative analysis of EMIC simulations of climate, and of equilibrium and transient responses to atmospheric CO2 doubling // Clim. Dyn. 2005. V. 25. № 4. P. 363–385.
  44. Pham M., Müller J.-F., Brasseur G.P. et al. A three–dimensional study of the tropospheric sulfur cycle // J. Geophys. Res. 1995. V. 100. № D12. P. 26061–26092.
  45. Rasch P.J., Barth M.C., Kiehl J.T. et al. A description of the global sulfur cycle and its controlling processes in the national center for Atmospheric Research Community Climate Model, Version 3 // J. Geophys. Res. 2000. V. 105. № D1. P. 1367–1385.
  46. Riemer N., Ault A.P., West M. et al. Aerosol mixing state: measurements, modeling, and impacts // Rev. Geophys. 2019. V. 57. № 2. P. 187— 249.
  47. Roelofs G.-J., Lelieveld J., Ganzeveld L. Simulation of global sulfate distribution and the influence on effective cloud drop radii with a coupled photochemistry sulfur cycle model // Tellus B. 1998. V. 50. № 3. P. 224–242.
  48. Rotstayn L.D., Plymin E.L., Collier M.A. et al. Declining aerosols in CMIP5 projections: effects on atmospheric temperature structure and midlatitude jets // J. Clim. 2014. V. 27. № 18. P. 6960–6977.
  49. Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Hoboken: John Wiley & Sons, 2006. 1203 p.
  50. Tashmim L., Porter W.C., Chen Q. et al. Contribution of expanded marine sulfur chemistry to the seasonal variability of dimethyl sulfide oxidation products and size–resolved sulfate aerosol // Atmos. Chem. Phys. 2024. V. 24. № 6. P. 3379–3403.
  51. Thornhill G.D., Collins W.J., Kramer R.J. et al. Effective radiative forcing from emissions of reactive gases and aerosols — a multi–model comparison // Atmos. Chem. Phys. 2021a. V. 21. № 2. P. 853–874.
  52. Thornhill G., Collins W., Olivié D. et al. Climate–driven chemistry and aerosol feedbacks in CMIP6 Earth system models // Atmos. Chem. Phys. 2021b. V. 21. № 2. P. 1105–1126.
  53. van der Werf G.R., Randerson J.T., Giglio L. et al. Global fire emissions estimates during 1997–2016 // Earth Syst. Sci. Data. 2017. V. 9. P. 697–720.
  54. Veres P., Neuman J.A., Bertram T.H. et al. Global airborne sampling reveals a new dimethyl sulfide oxidation mechanism in the marine atmosphere // Proc. Natl. Acad. Sci. USA. 2020. V. 117. № 9. P. 4505–4510.
  55. Wang Y., Xia W., Liu X. et al. Disproportionate control on aerosol burden by light rain // Nat. Geosci. 2021a. V. 14. P. 72–76.
  56. Wang Y., Xia W., Zhang G.J. What rainfall rates are most important to wet removal of different aerosol types? // Atmos. Chem. Phys. 2021b. V. 21. № 22. P. 16797–16816.
  57. Warneck P. Chemistry of the natural atmosphere. San Diego: Academic Press, 2000. 927 p.
  58. Zelinka M.D., Andrews T., Forster P.M., Taylor K. Quantifying components of aerosol–cloud–radiation interactions in climate models // J. Geophys. Res. 2014. V. 119. № 12. P. 7599–7615.
  59. Zickfeld K., Eby M., Weaver A.J. et al. Long-term climate change commitment and reversibility: An EMIC intercomparison // J. Clim. 2013. V. 26. № 16. P. 5782–5809.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».