Comparing Classes of Finite Sums


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The notion of Turing computable embedding is a computable analog of Borel embedding. It provides a way to compare classes of countable structures, effectively reducing the classification problem for one class to that for the other. Most of the known results on nonexistence of Turing computable embeddings reflect differences in the complexity of the sentences needed to distinguish among nonisomorphic members of the two classes. Here we consider structures obtained as sums. It is shown that the n-fold sums of members of certain classes lie strictly below the (n+1)-fold sums. The differences reflect model-theoretic considerations related to Morley degree, not differences in the complexity of the sentences that describe the structures. We consider three different kinds of sum structures: cardinal sums, in which the components are named by predicates; equivalence sums, in which the components are equivalence classes under an equivalence relation; and direct sums of certain groups.

Авторлар туралы

U. Andrews

Department of Mathematics, University of Wisconsin

Хат алмасуға жауапты Автор.
Email: andrews@math.wisc.edu
АҚШ, Madison, WI, 53706-1388

D. Dushenin

SNIIGGiMS

Email: andrews@math.wisc.edu
Ресей, Krasnyi pr. 67, Novosibirsk

C. Hill

Department of Mathematics and Computer Science, Wesleyan University

Email: andrews@math.wisc.edu
АҚШ, Middletown, CT, 06459

J. Knight

Department of Mathematics, Univ. Notre Dame

Email: andrews@math.wisc.edu
АҚШ, 255 Hurley, Notre Dame, IN, 46556

A. Melnikov

Institute of Natural and Mathematical Sciences, Massey University

Email: andrews@math.wisc.edu
Жаңа Зеландия, Palmerston North, 4442

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media New York, 2016