Degrees of Autostability Relative to Strong Constructivizations for Boolean Algebras


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is proved that for every computable ordinal α, the Turing degree 0(α) is a degree of autostability of some computable Boolean algebra and is also a degree of autostability relative to strong constructivizations for some decidable Boolean algebra. It is shown that a Harrison Boolean algebra has no degree of autostability relative to strong constructivizations. It is stated that the index set of decidable Boolean algebras having degree of autostability relative to strong constuctivizations is ∏11-complete.

作者简介

N. Bazhenov

Sobolev Institute of Mathematics; Novosibirsk State University; Kazan (Volga Region) Federal University

编辑信件的主要联系方式.
Email: bazhenov@math.nsc.ru
俄罗斯联邦, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090; ul. Kremlevskaya 18, Kazan, 420008

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016