Degrees of Autostability Relative to Strong Constructivizations for Boolean Algebras
- 作者: Bazhenov N.A.1,2,3
-
隶属关系:
- Sobolev Institute of Mathematics
- Novosibirsk State University
- Kazan (Volga Region) Federal University
- 期: 卷 55, 编号 2 (2016)
- 页面: 87-102
- 栏目: Article
- URL: https://journal-vniispk.ru/0002-5232/article/view/233976
- DOI: https://doi.org/10.1007/s10469-016-9381-x
- ID: 233976
如何引用文章
详细
It is proved that for every computable ordinal α, the Turing degree 0(α) is a degree of autostability of some computable Boolean algebra and is also a degree of autostability relative to strong constructivizations for some decidable Boolean algebra. It is shown that a Harrison Boolean algebra has no degree of autostability relative to strong constructivizations. It is stated that the index set of decidable Boolean algebras having degree of autostability relative to strong constuctivizations is ∏11-complete.
作者简介
N. Bazhenov
Sobolev Institute of Mathematics; Novosibirsk State University; Kazan (Volga Region) Federal University
编辑信件的主要联系方式.
Email: bazhenov@math.nsc.ru
俄罗斯联邦, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090; ul. Kremlevskaya 18, Kazan, 420008
补充文件
