Strong Decidability and Strong Recognizability
- 作者: Maksimova L.L.1,2, Yun V.F.1,2
-
隶属关系:
- Sobolev Institute of Mathematics
- Novosibirsk State University
- 期: 卷 56, 编号 5 (2017)
- 页面: 370-385
- 栏目: Article
- URL: https://journal-vniispk.ru/0002-5232/article/view/234054
- DOI: https://doi.org/10.1007/s10469-017-9459-0
- ID: 234054
如何引用文章
详细
Extensions of Johansson’s minimal logic J are considered. It is proved that families of negative and nontrivial logics and a series of other families are strongly decidable over J. This means that, given any finite list Rul of axiom schemes and rules of inference, we can effectively verify whether the logic with axioms and schemes, J + Rul, belongs to a given family. Strong recognizability over J is proved for known logics Neg, Gl, and KC as well as for logics LC and NC and all their extensions.
作者简介
L. Maksimova
Sobolev Institute of Mathematics; Novosibirsk State University
编辑信件的主要联系方式.
Email: lmaksi@math.nsc.ru
俄罗斯联邦, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090
V. Yun
Sobolev Institute of Mathematics; Novosibirsk State University
Email: lmaksi@math.nsc.ru
俄罗斯联邦, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090
补充文件
