Strong Decidability and Strong Recognizability


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Extensions of Johansson’s minimal logic J are considered. It is proved that families of negative and nontrivial logics and a series of other families are strongly decidable over J. This means that, given any finite list Rul of axiom schemes and rules of inference, we can effectively verify whether the logic with axioms and schemes, J + Rul, belongs to a given family. Strong recognizability over J is proved for known logics Neg, Gl, and KC as well as for logics LC and NC and all their extensions.

作者简介

L. Maksimova

Sobolev Institute of Mathematics; Novosibirsk State University

编辑信件的主要联系方式.
Email: lmaksi@math.nsc.ru
俄罗斯联邦, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

V. Yun

Sobolev Institute of Mathematics; Novosibirsk State University

Email: lmaksi@math.nsc.ru
俄罗斯联邦, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2017