Strong Decidability and Strong Recognizability
- Авторы: Maksimova L.L.1,2, Yun V.F.1,2
-
Учреждения:
- Sobolev Institute of Mathematics
- Novosibirsk State University
- Выпуск: Том 56, № 5 (2017)
- Страницы: 370-385
- Раздел: Article
- URL: https://journal-vniispk.ru/0002-5232/article/view/234054
- DOI: https://doi.org/10.1007/s10469-017-9459-0
- ID: 234054
Цитировать
Аннотация
Extensions of Johansson’s minimal logic J are considered. It is proved that families of negative and nontrivial logics and a series of other families are strongly decidable over J. This means that, given any finite list Rul of axiom schemes and rules of inference, we can effectively verify whether the logic with axioms and schemes, J + Rul, belongs to a given family. Strong recognizability over J is proved for known logics Neg, Gl, and KC as well as for logics LC and NC and all their extensions.
Ключевые слова
Об авторах
L. Maksimova
Sobolev Institute of Mathematics; Novosibirsk State University
Автор, ответственный за переписку.
Email: lmaksi@math.nsc.ru
Россия, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090
V. Yun
Sobolev Institute of Mathematics; Novosibirsk State University
Email: lmaksi@math.nsc.ru
Россия, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090
Дополнительные файлы
